桥梁之间的分层多任务无监督域适应用于驱动器损坏诊断

上传者: cooc89 | 上传时间: 2022-01-29 09:02:36 | 文件大小: 216.7MB | 文件类型: ZIP
HierMUD: Hierarchical Multi-task Unsupervised Domain Adaptation between Bridges for Drive-by Damage Diagnosis 通过驾驶车辆的振动响应监测桥梁,通过允许每辆车检查多座桥梁,并消除在每座桥梁上安装和维护传感器的需要,实现高效、低成本的桥梁维护。然而,许多现有的驱动式监控方法都基于有监督的学习模型,需要来自每座桥梁的大量标记数据。获取这些标记数据即使不是不可能的,也是昂贵且耗时的。此外,直接将在一座桥梁上训练的有监督学习模型应用于新桥梁,会由于不同桥梁的数据分布之间的变化而导致精度较低。此外,当我们有多个任务(例如,损伤检测、定位和量化)时,分布转移比只有一个任务更具挑战性,因为不同的任务有不同的分布转移和不同的任务难度。 为此,我们引入了HierMUD,这是第一个分层多任务无监督领域自适应框架,它将从一座桥梁学习到的损伤诊断模型转移到一座新桥梁,而无需在任何任务中使用新桥梁的任何标签。具体来说,我们的框架以对抗的方式学习分层神经网络模型,以提取对多个诊断任务有用且跨多个桥梁不变的

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明