上传者: charles_zhang_
|
上传时间: 2023-03-13 22:16:25
|
文件大小: 14.45MB
|
文件类型: PPTX
注意力机制(英語:attention)是人工神经网络中一种模仿认知注意力的技术。这种机制可以增强神经网络输入数据中某些部分的权重,同时减弱其他部分的权重,以此将网络的关注点聚焦于数据中最重要的一小部分。数据中哪些部分比其他部分更重要取决于上下文。可以通过梯度下降法对注意力机制进行训练。
类似于注意力机制的架构最早于1990年代提出,当时提出的名称包括乘法模块(multiplicative module)、sigma pi单元、超网络(hypernetwork)等。注意力机制的灵活性来自于它的“软权重”特性,即这种权重是可以在运行时改变的,而非像通常的权重一样必须在运行时保持固定。注意力机制的用途包括神经图灵机中的记忆功能、可微分神经计算机中的推理任务[2]、Transformer模型中的语言处理、Perceiver(感知器)模型中的多模态数据处理(声音、图像、视频和文本)。人类的注意力机制(Attention Mechanism)是从直觉中得到,它是人类利用有限的注意力资源从大量信息中快速筛选出高价值信息的手段。深度学习中的注意力机制借鉴了人类的注意力思维方式,被广泛的应用在自然语言