模式识别课程作业:C均值(k_means)聚类+canopy+dbscan聚类设计

上传者: c437yuyang | 上传时间: 2019-12-21 19:30:26 | 文件大小: 1.1MB | 文件类型: zip
模式识别的课程作业,用MFC做的,实现了三个聚类算法(K_means,dbscan密度聚类,canopy),工程名叫k_means是因为一开始只做的k_means,后面加进去的,其实都做了,好好看看可以学到不少东西,不只是算法还有MFC的基础绘图等等

文件下载

资源详情

[{"title":"( 49 个子文件 1.1MB ) 模式识别课程作业:C均值(k_means)聚类+canopy+dbscan聚类设计","children":[{"title":"kmeans","children":[{"title":"kmeans.sln <span style='color:#111;'> 885B </span>","children":null,"spread":false},{"title":"kmeans.suo <span style='color:#111;'> 47.50KB </span>","children":null,"spread":false},{"title":"Release","children":[{"title":"kmeans.exe <span style='color:#111;'> 1.80MB </span>","children":null,"spread":false}],"spread":true},{"title":"kmeans","children":[{"title":"ReadMe.txt <span style='color:#111;'> 4.53KB </span>","children":null,"spread":false},{"title":"kmeans.idc <span style='color:#111;'> 1.45KB </span>","children":null,"spread":false},{"title":"DataPoint.cpp <span style='color:#111;'> 1.35KB </span>","children":null,"spread":false},{"title":"res","children":[{"title":"kmeans.ico <span style='color:#111;'> 66.19KB </span>","children":null,"spread":false},{"title":"kmeans.rc2 <span style='color:#111;'> 796B </span>","children":null,"spread":false}],"spread":true},{"title":"Canopy.cpp <span style='color:#111;'> 1.93KB </span>","children":null,"spread":false},{"title":"MyPoint.cpp <span style='color:#111;'> 412B </span>","children":null,"spread":false},{"title":"rangeRandom.txt <span style='color:#111;'> 3.31KB </span>","children":null,"spread":false},{"title":"gaussin100个.txt <span style='color:#111;'> 4.91KB </span>","children":null,"spread":false},{"title":"GaussinPoints1002个.txt <span style='color:#111;'> 16.45KB </span>","children":null,"spread":false},{"title":"GaussinPoints1000个.txt <span style='color:#111;'> 3.27KB </span>","children":null,"spread":false},{"title":"uniform0个.txt <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"stdafx.h <span style='color:#111;'> 1.76KB </span>","children":null,"spread":false},{"title":"uniform450个.txt <span style='color:#111;'> 7.37KB </span>","children":null,"spread":false},{"title":"Common.h <span style='color:#111;'> 586B </span>","children":null,"spread":false},{"title":"stdafx.cpp <span style='color:#111;'> 208B </span>","children":null,"spread":false},{"title":"kmeans.vcxproj.user <span style='color:#111;'> 143B </span>","children":null,"spread":false},{"title":"kmeans.h <span style='color:#111;'> 505B </span>","children":null,"spread":false},{"title":"uniform300个.txt <span style='color:#111;'> 4.92KB </span>","children":null,"spread":false},{"title":"uniform500个.txt <span style='color:#111;'> 8.20KB </span>","children":null,"spread":false},{"title":"ClusterAnalysis.h <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"kmeans.vcxproj.filters <span style='color:#111;'> 2.90KB </span>","children":null,"spread":false},{"title":"gaussin50个.txt <span style='color:#111;'> 4.92KB </span>","children":null,"spread":false},{"title":"kmeans.aps <span style='color:#111;'> 107.55KB </span>","children":null,"spread":false},{"title":"gaussin200个.txt <span style='color:#111;'> 3.27KB </span>","children":null,"spread":false},{"title":"kmeans.cpp <span style='color:#111;'> 2.41KB </span>","children":null,"spread":false},{"title":"resource.h <span style='color:#111;'> 4.38KB </span>","children":null,"spread":false},{"title":"uniform400个.txt <span style='color:#111;'> 6.54KB </span>","children":null,"spread":false},{"title":"targetver.h <span style='color:#111;'> 314B </span>","children":null,"spread":false},{"title":"ClusterOutput.txt <span style='color:#111;'> 7.37KB </span>","children":null,"spread":false},{"title":"gaussin500个.txt <span style='color:#111;'> 8.19KB </span>","children":null,"spread":false},{"title":"gaussin400个.txt <span style='color:#111;'> 6.55KB </span>","children":null,"spread":false},{"title":"Common.cpp <span style='color:#111;'> 2.29KB </span>","children":null,"spread":false},{"title":"MyPoint.h <span style='color:#111;'> 266B </span>","children":null,"spread":false},{"title":"ClusterAnalysis.cpp <span style='color:#111;'> 8.10KB </span>","children":null,"spread":false},{"title":"Canopy.h <span style='color:#111;'> 552B </span>","children":null,"spread":false},{"title":"kmeans.vcxproj <span style='color:#111;'> 6.18KB </span>","children":null,"spread":false},{"title":"uniform50个.txt <span style='color:#111;'> 836B </span>","children":null,"spread":false},{"title":"uniform100个.txt <span style='color:#111;'> 1.64KB </span>","children":null,"spread":false},{"title":"kmeansDlg.cpp <span style='color:#111;'> 27.20KB </span>","children":null,"spread":false},{"title":"uniform200个.txt <span style='color:#111;'> 13.10KB </span>","children":null,"spread":false},{"title":"ClusterOutput_20x4.txt <span style='color:#111;'> 7.60KB </span>","children":null,"spread":false},{"title":"kmeansDlg.h <span style='color:#111;'> 2.53KB </span>","children":null,"spread":false},{"title":"DataPoint.h <span style='color:#111;'> 1.28KB </span>","children":null,"spread":false},{"title":"kmeans.rc <span style='color:#111;'> 16.36KB </span>","children":null,"spread":false}],"spread":false},{"title":"DBScan说明.txt <span style='color:#111;'> 254B </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

  • xl_love_rain :
    挺好的。。
    2019-10-14
  • demeihua :
    很不错的资源,都做的挺好的
    2017-08-24

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明