PointCNN的代码下载链接

上传者: bxwbgxifpj | 上传时间: 2022-03-17 16:34:12 | 文件大小: 445KB | 文件类型: -
由山东大学提出的PointCNN是一个简单通用的点云特征学习架构。基于这一方法的一组神经网络模型一举刷新了五个点云基准测试的记录。
CNN成功的关键在于其卷积操作能够很好地从基于规则域表示的数据中提取局部信息。然而,由于点云数据的不规则和无序性,使得卷积操作由于输入数据顺序的不稳定很难直接应用到点云数据上。
为了解决这个问题,PointCNN提出了一种称为X-变换的方法。X-变换是从输入点学习到的一组权值X,这组权值可以对各点相关联的特征进行重新加权和排列。 X-变换可以实现“随机应变”,即当输入点的顺序变化时, X能够相应地变化,使加权和排列之后的特征近似不变。输入特征在经过X-变换的处理之后能够变成与输入点顺序无关同时也编码了输入点形状信息的归一化的特征。在经过X-变换之后的特征上进行卷积能够极大提高卷积核的利用率, 从而大大提高卷积操作在无序数据上提取特征的能力。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明