Pytorch下实现Unet对自己多类别数据集的语义分割

上传者: brf_UCAS | 上传时间: 2021-04-07 08:36:55 | 文件大小: 69KB | 文件类型: ZIP
Unet通常应用到单类别的语义分割,经过调整后该代码适合于多类别的语义分割。对应博客:https://blog.csdn.net/brf_UCAS/article/details/112383722

文件下载

资源详情

[{"title":"( 46 个子文件 69KB ) Pytorch下实现Unet对自己多类别数据集的语义分割","children":[{"title":"U-Net","children":[{"title":"dataloaders","children":[{"title":"utils.py <span style='color:#111;'> 3.27KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"utils.cpython-37.pyc <span style='color:#111;'> 3.10KB </span>","children":null,"spread":false},{"title":"__init__.cpython-37.pyc <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false},{"title":"custom_transforms.cpython-37.pyc <span style='color:#111;'> 5.30KB </span>","children":null,"spread":false}],"spread":true},{"title":"custom_transforms.py <span style='color:#111;'> 4.93KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 1.83KB </span>","children":null,"spread":false},{"title":"datasets","children":[{"title":"coco.py <span style='color:#111;'> 5.58KB </span>","children":null,"spread":false},{"title":"pascal.py <span style='color:#111;'> 4.39KB </span>","children":null,"spread":false},{"title":"combine_dbs.py <span style='color:#111;'> 3.23KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"sbd.cpython-37.pyc <span style='color:#111;'> 3.89KB </span>","children":null,"spread":false},{"title":"__init__.cpython-37.pyc <span style='color:#111;'> 138B </span>","children":null,"spread":false},{"title":"combine_dbs.cpython-37.pyc <span style='color:#111;'> 3.08KB </span>","children":null,"spread":false},{"title":"cityscapes.cpython-37.pyc <span style='color:#111;'> 5.40KB </span>","children":null,"spread":false},{"title":"pascal.cpython-37.pyc <span style='color:#111;'> 4.28KB </span>","children":null,"spread":false},{"title":"coco.cpython-37.pyc <span style='color:#111;'> 5.32KB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"cityscapes.py <span style='color:#111;'> 5.24KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"data","children":[{"title":"test.txt <span style='color:#111;'> 800B </span>","children":null,"spread":false},{"title":"info.json <span style='color:#111;'> 976B </span>","children":null,"spread":false}],"spread":true},{"title":"train.py <span style='color:#111;'> 12.18KB </span>","children":null,"spread":false},{"title":"demo.py <span style='color:#111;'> 3.50KB </span>","children":null,"spread":false},{"title":"mypath.py <span style='color:#111;'> 497B </span>","children":null,"spread":false},{"title":"modeling","children":[{"title":"__pycache__","children":[{"title":"resnet.cpython-37.pyc <span style='color:#111;'> 6.34KB </span>","children":null,"spread":false},{"title":"pspnet.cpython-37.pyc <span style='color:#111;'> 3.50KB </span>","children":null,"spread":false},{"title":"__init__.cpython-37.pyc <span style='color:#111;'> 126B </span>","children":null,"spread":false},{"title":"decoder.cpython-37.pyc <span style='color:#111;'> 1.99KB </span>","children":null,"spread":false},{"title":"deeplab.cpython-37.pyc <span style='color:#111;'> 2.65KB </span>","children":null,"spread":false},{"title":"resnet101.cpython-37.pyc <span style='color:#111;'> 4.70KB </span>","children":null,"spread":false},{"title":"aspp.cpython-37.pyc <span style='color:#111;'> 3.19KB </span>","children":null,"spread":false},{"title":"extractors.cpython-37.pyc <span style='color:#111;'> 11.11KB </span>","children":null,"spread":false},{"title":"unet.cpython-37.pyc <span style='color:#111;'> 3.63KB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"unet.py <span style='color:#111;'> 3.16KB </span>","children":null,"spread":false}],"spread":true},{"title":"curve","children":[{"title":"loss.txt <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"utils","children":[{"title":"loss.py <span style='color:#111;'> 1.89KB </span>","children":null,"spread":false},{"title":"summaries.py <span style='color:#111;'> 1.15KB </span>","children":null,"spread":false},{"title":"lr_scheduler.py <span style='color:#111;'> 2.91KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"metrics.cpython-37.pyc <span style='color:#111;'> 2.16KB </span>","children":null,"spread":false},{"title":"saver.cpython-37.pyc <span style='color:#111;'> 2.15KB </span>","children":null,"spread":false},{"title":"summaries.cpython-37.pyc <span style='color:#111;'> 1.37KB </span>","children":null,"spread":false},{"title":"calculate_weights.cpython-37.pyc <span style='color:#111;'> 1007B </span>","children":null,"spread":false},{"title":"lr_scheduler.cpython-37.pyc <span style='color:#111;'> 2.18KB </span>","children":null,"spread":false},{"title":"loss.cpython-37.pyc <span style='color:#111;'> 1.84KB </span>","children":null,"spread":false}],"spread":true},{"title":"calculate_weights.py <span style='color:#111;'> 985B </span>","children":null,"spread":false},{"title":"saver.py <span style='color:#111;'> 2.35KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明