sbl方法介绍

上传者: baidu_21111355 | 上传时间: 2021-08-06 20:10:38 | 文件大小: 68KB | 文件类型: DOCX
稀疏贝叶斯学习方法与支持向量机学习方法均是围绕核函数构建预测模型的方法,而相比较于支持向量机方法,稀疏贝叶斯学习方法的最重要的特点在于其学习过程是基于贝叶斯架构的,而不是采用结构风险最小化原则,这就使稀疏贝叶斯学习方法拥有如下独特优势:(1)能够提供概率分布预测结果;(2)无需对支持向量机中平衡经验风险和泛化能力的惩罚因子进行设定;(3)模型稀疏程度与支持向量机相当或更好。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明