七个完整rbf算法源程序

上传者: ateng5921 | 上传时间: 2020-02-24 03:01:02 | 文件大小: 8KB | 文件类型: rar
共有七个完整算法 % 1.基于聚类的RBF 网设计算法 % 一维输入,一维输出,逼近效果很好! SamNum = 100; % 总样本数 TestSamNum = 101; % 测试样本数 InDim = 1; % 样本输入维数 ClusterNum = 10; % 隐节点数,即聚类样本数 Overlap = 1.0; % 隐节点重叠系数 % 根据目标函数获得样本输入输出 rand('state',sum(100*clock)) NoiseVar = 0.1; Noise = NoiseVar*randn(1,SamNum); SamIn = 8*rand(1,SamNum)-4; SamOutNoNoise = 1.1*(1-SamIn+2*SamIn.^2).*exp(-SamIn.^2/2); SamOut = SamOutNoNoise + Noise; TestSamIn = -4:0.08:4; TestSamOut = 1.1*(1-TestSamIn+2*TestSamIn.^2).*exp(-TestSamIn.^2/2); figure hold on grid plot(SamIn,SamOut,'k+') plot(TestSamIn,TestSamOut,'r--') xlabel('Input x'); ylabel('Output y'); Centers = SamIn(:,1:ClusterNum); NumberInClusters = zeros(ClusterNum,1); % 各类中的样本数,初始化为零 IndexInClusters = zeros(ClusterNum,SamNum); % 各类所含样本的索引号 while 1, NumberInClusters = zeros(ClusterNum,1); % 各类中的样本数,初始化为零 IndexInClusters = zeros(ClusterNum,SamNum); % 各类所含样本的索引号 % 按最小距离原则对所有样本进行分类 for i = 1:SamNum AllDistance = dist(Centers',SamIn(:,i)); [MinDist,Pos] = min(AllDistance); NumberInClusters(Pos) = NumberInClusters(Pos) + 1; IndexInClusters(Pos,NumberInClusters(Pos)) = i; end % 保存旧的聚类中心 OldCenters = Centers; for i = 1:ClusterNum Index = IndexInClusters(i,1:NumberInClusters(i)); Centers(:,i) = mean(SamIn(:,Index)')'; end % 判断新旧聚类中心是否一致,是则结束聚类 EqualNum = sum(sum(Centers==OldCenters)); if EqualNum == InDim*ClusterNum, break, end end % 计算各隐节点的扩展常数(宽度) AllDistances = dist(Centers',Centers); % 计算隐节点数据中心间的距离(矩阵) Maximum = max(max(AllDistances)); % 找出其中最大的一个距离 for i = 1:ClusterNum % 将对角线上的0 替换为较大的值 AllDistances(i,i) = Maximum+1; end Spreads = Overlap*min(AllDistances)'; % 以隐节点间的最小距离作为扩展常数 % 计算各隐节点的输出权值 Distance = dist(Centers',SamIn); % 计算各样本输入离各数据中心的距离 SpreadsMat = repmat(Spreads,1,SamNum); HiddenUnitOut = radbas(Distance./SpreadsMat); % 计算隐节点输出阵 HiddenUnitOutEx = [HiddenUnitOut' ones(SamNum,1)]'; % 考虑偏移 W2Ex = SamOut*pinv(HiddenUnitOutEx); % 求广义输出权值 W2 = W2Ex(:,1:ClusterNum); % 输出权值 B2 = W2Ex(:,ClusterNum+1)

文件下载

资源详情

[{"title":"( 7 个子文件 8KB ) 七个完整rbf算法源程序","children":[{"title":"七个RBF神经网络的源程序","children":[{"title":"RBF_cluster.m.txt <span style='color:#111;'> 2.54KB </span>","children":null,"spread":false},{"title":"RBF建模.m.txt <span style='color:#111;'> 6.13KB </span>","children":null,"spread":false},{"title":"RBF_OLS.m.txt <span style='color:#111;'> 2.35KB </span>","children":null,"spread":false},{"title":"RBFyuce.m.txt <span style='color:#111;'> 2.04KB </span>","children":null,"spread":false},{"title":"RBFFunction.m.txt <span style='color:#111;'> 1.56KB </span>","children":null,"spread":false},{"title":"RBF_k.m.txt <span style='color:#111;'> 2.61KB </span>","children":null,"spread":false},{"title":"RBF_Gradient.m.txt <span style='color:#111;'> 1.21KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

  • smallliuyi :
    有用有用,就是有程序没写完哦
    2015-06-04
  • xubinkuailaile :
    关于隐含节点选取有漏洞,有bug。
    2015-05-17
  • rw_wind :
    算法很实用,谢谢楼主分享。
    2014-09-15
  • scandalsoul :
    能够运行,很有用,基础学习
    2014-06-21
  • wjf19920920 :
    学习神经网络很实用的学习资料,如果能多谢注释就好了
    2014-04-11

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明