WHENet头部姿态估计代码+onnx模型

上传者: aixiao_xiaoo | 上传时间: 2025-11-03 15:55:25 | 文件大小: 510.25MB | 文件类型: RAR
【WHENet头部姿态估计代码+onnx模型】是一份基于深度学习技术的资源,用于实现头部姿态估计。头部姿态估计是计算机视觉领域中的一个重要任务,它涉及到对人头的三维姿态进行估计,通常包括头部的俯仰角、翻滚角和偏航角。在自动驾驶、监控视频分析、虚拟现实等领域有着广泛的应用。 WHENet(Weakly-supervised Head Pose Estimation Network)是一种轻量级的神经网络架构,设计用于高效且准确地估计头部姿态。该模型采用了弱监督学习方法,这意味着它可以在相对较少的标注数据上训练,降低了数据获取和处理的成本。WHENet结合了Yolov4框架,这是一种流行的实时目标检测模型,以其快速和准确而著名。通过与Yolov4的集成,WHENet能够同时进行目标检测和头部姿态估计,提高了整体系统的实用性。 ONNX(Open Neural Network Exchange)是一种开放的模型格式,支持多种深度学习框架之间的模型转换和共享。将WHENet模型转化为ONNX格式,意味着用户可以使用ONNX支持的任何框架(如TensorFlow、PyTorch或Caffe等)来运行和部署这个模型,增加了灵活性和跨平台的兼容性。 本压缩包`HeadPoseEstimation-WHENet-yolov4-onnx-main.rar`中可能包含以下内容: 1. **预训练模型**:WHENet头部姿态估计模型的ONNX文件,可以直接用于预测。 2. **源代码**:用于加载和运行ONNX模型的Python代码,可能包括数据预处理、模型推理和后处理步骤。 3. **示例数据**:可能包含一些测试图片,用于展示模型的运行效果。 4. **依赖库**:可能列出所需安装的Python库或其他依赖项,确保代码能正确执行。 5. **README文件**:详细说明如何编译、运行和使用代码的文档,包括环境配置、模型加载和结果解析。 为了使用这份资源,首先需要一个支持ONNX的开发环境,并按照README的指示安装所有必要的库。然后,你可以加载WHENet模型并使用提供的代码对输入图像进行姿态估计。输入可以是单个图像或图像序列,输出将是头部的三个姿态角度。此外,代码可能还提供了可视化功能,以图形方式显示预测结果,便于理解和调试。 这个资源为开发者提供了一套完整的头部姿态估计解决方案,结合了WHENet的高效性和ONNX的跨平台特性,对于研究者和工程师来说,是一个有价值的工具,可应用于各种实际应用场景,如智能监控、人机交互和增强现实。

文件下载

资源详情

[{"title":"( 49 个子文件 510.25MB ) WHENet头部姿态估计代码+onnx模型","children":[{"title":"HeadPoseEstimation-WHENet-yolov4-onnx-main","children":[{"title":"test.jpg <span style='color:#111;'> 121.05KB </span>","children":null,"spread":false},{"title":"batchsize_clear.py <span style='color:#111;'> 1.34KB </span>","children":null,"spread":false},{"title":"saved_model_224x224","children":[{"title":"saved_model_224x224","children":[{"title":"yolov4_headdetection_480x640.onnx <span style='color:#111;'> 243.89MB </span>","children":null,"spread":false},{"title":"whenet_rtx3070.trt <span style='color:#111;'> 10.38MB </span>","children":null,"spread":false},{"title":"openvino","children":[{"title":"myriad","children":[{"title":"whenet_224x224.blob <span style='color:#111;'> 14.62MB </span>","children":null,"spread":false}],"spread":true},{"title":"FP32","children":[{"title":"whenet_224x224.xml <span style='color:#111;'> 245.49KB </span>","children":null,"spread":false},{"title":"whenet_224x224.bin <span style='color:#111;'> 16.44MB </span>","children":null,"spread":false},{"title":"whenet_224x224.mapping <span style='color:#111;'> 145.84KB </span>","children":null,"spread":false}],"spread":true},{"title":"FP16","children":[{"title":"whenet_224x224.xml <span style='color:#111;'> 245.39KB </span>","children":null,"spread":false},{"title":"whenet_224x224.bin <span style='color:#111;'> 8.22MB </span>","children":null,"spread":false},{"title":"whenet_224x224.mapping <span style='color:#111;'> 145.84KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"model_coreml_float32.mlmodel <span style='color:#111;'> 16.48MB </span>","children":null,"spread":false},{"title":"whenet_224x224_8batch.onnx <span style='color:#111;'> 16.51MB </span>","children":null,"spread":false},{"title":"model_float32.onnx <span style='color:#111;'> 16.51MB </span>","children":null,"spread":false},{"title":"model_float32.pb <span style='color:#111;'> 16.52MB </span>","children":null,"spread":false},{"title":"assets","children":null,"spread":false},{"title":"model_full_integer_quant.tflite <span style='color:#111;'> 4.96MB </span>","children":null,"spread":false},{"title":"model_float32.tflite <span style='color:#111;'> 16.50MB </span>","children":null,"spread":false},{"title":"frozen_model.pb <span style='color:#111;'> 16.78MB </span>","children":null,"spread":false},{"title":"model_integer_quant.tflite <span style='color:#111;'> 4.96MB </span>","children":null,"spread":false},{"title":"model_dynamic_range_quant.tflite <span style='color:#111;'> 4.85MB </span>","children":null,"spread":false},{"title":"model_full_integer_quant_edgetpu.tflite <span style='color:#111;'> 6.58MB </span>","children":null,"spread":false},{"title":"whenet_224x224_4batch.onnx <span style='color:#111;'> 16.51MB </span>","children":null,"spread":false},{"title":"tfjs_model_float16","children":[{"title":"model.json <span style='color:#111;'> 173.28KB </span>","children":null,"spread":false},{"title":"group1-shard3of3.bin <span style='color:#111;'> 225.27KB </span>","children":null,"spread":false},{"title":"group1-shard2of3.bin <span style='color:#111;'> 4.00MB </span>","children":null,"spread":false},{"title":"group1-shard1of3.bin <span style='color:#111;'> 4.00MB </span>","children":null,"spread":false}],"spread":false},{"title":"model_weight_quant.tflite <span style='color:#111;'> 4.85MB </span>","children":null,"spread":false},{"title":"yolov4_tiny_3l_headdetection_480x640.onnx <span style='color:#111;'> 23.39MB </span>","children":null,"spread":false},{"title":"tfjs_model_float32","children":[{"title":"group1-shard1of5.bin <span style='color:#111;'> 4.00MB </span>","children":null,"spread":false},{"title":"model.json <span style='color:#111;'> 162.33KB </span>","children":null,"spread":false},{"title":"group1-shard5of5.bin <span style='color:#111;'> 449.98KB </span>","children":null,"spread":false},{"title":"group1-shard4of5.bin <span style='color:#111;'> 4.00MB </span>","children":null,"spread":false},{"title":"group1-shard2of5.bin <span style='color:#111;'> 4.00MB </span>","children":null,"spread":false},{"title":"group1-shard3of5.bin <span style='color:#111;'> 4.00MB </span>","children":null,"spread":false}],"spread":false},{"title":"model_float16_quant.tflite <span style='color:#111;'> 8.31MB </span>","children":null,"spread":false},{"title":"saved_model.pb <span style='color:#111;'> 11.35MB </span>","children":null,"spread":false},{"title":"whenet_224x224_16batch.onnx <span style='color:#111;'> 16.51MB </span>","children":null,"spread":false},{"title":"variables","children":[{"title":"variables.index <span style='color:#111;'> 6.13KB </span>","children":null,"spread":false},{"title":"variables.data-00000-of-00001 <span style='color:#111;'> 15.14MB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true},{"title":"shrunk.onnx <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.54KB </span>","children":null,"spread":false},{"title":"whenet_1x3x224x224_prepost_disable_front_side_detection.onnx <span style='color:#111;'> 16.52MB </span>","children":null,"spread":false},{"title":"whenet_1x3x224x224_prepost.onnx <span style='color:#111;'> 16.52MB </span>","children":null,"spread":false},{"title":"demo_video.py <span style='color:#111;'> 12.84KB </span>","children":null,"spread":false},{"title":"make_pre_process.py <span style='color:#111;'> 786B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 98B </span>","children":null,"spread":false},{"title":"convert_script.txt <span style='color:#111;'> 4.80KB </span>","children":null,"spread":false},{"title":"make_post_process.py <span style='color:#111;'> 1.38KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.44KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明