[{"title":"( 55 个子文件 4.65MB ) 哈尔滨工程大学的矩阵论WORD教案,大家好好看啊","children":[{"title":"矩阵论WORD教案","children":[{"title":"2,内积空间","children":[{"title":"正交变换与正交矩阵.doc <span style='color:#111;'> 135.00KB </span>","children":null,"spread":false},{"title":"内积空间.doc <span style='color:#111;'> 871.50KB </span>","children":null,"spread":false},{"title":"_desktop.ini <span style='color:#111;'> 8B </span>","children":null,"spread":false},{"title":"线性变换与矩阵.doc <span style='color:#111;'> 216.00KB </span>","children":null,"spread":false},{"title":"线性变换的运算.doc <span style='color:#111;'> 137.50KB </span>","children":null,"spread":false}],"spread":true},{"title":"8.广义逆矩阵","children":[{"title":"_desktop.ini <span style='color:#111;'> 8B </span>","children":null,"spread":false},{"title":"82广义逆矩阵续.doc <span style='color:#111;'> 467.50KB </span>","children":null,"spread":false},{"title":"85广义逆2.doc <span style='color:#111;'> 256.00KB </span>","children":null,"spread":false},{"title":"83自反广义逆.doc <span style='color:#111;'> 101.50KB </span>","children":null,"spread":false},{"title":"86广义逆3.doc <span style='color:#111;'> 560.00KB </span>","children":null,"spread":false},{"title":"84广义逆1.doc <span style='color:#111;'> 202.50KB </span>","children":null,"spread":false},{"title":"81广义逆矩阵分类.doc <span style='color:#111;'> 83.50KB </span>","children":null,"spread":false}],"spread":true},{"title":"7,矩阵函数","children":[{"title":"_desktop.ini <span style='color:#111;'> 8B </span>","children":null,"spread":false},{"title":"74 矩阵方程及其求解.doc <span style='color:#111;'> 185.50KB </span>","children":null,"spread":false},{"title":"722矩阵函数2.doc <span style='color:#111;'> 79.00KB </span>","children":null,"spread":false},{"title":"71矩阵幂级数.doc <span style='color:#111;'> 124.50KB </span>","children":null,"spread":false},{"title":"721矩阵函数1.doc <span style='color:#111;'> 135.00KB </span>","children":null,"spread":false},{"title":"73矩阵函数的一般定义及其计算.doc <span style='color:#111;'> 241.00KB </span>","children":null,"spread":false}],"spread":true},{"title":"5,向量与矩阵的范数","children":[{"title":"_desktop.ini <span style='color:#111;'> 8B </span>","children":null,"spread":false},{"title":"5.1向量的范数.doc <span style='color:#111;'> 361.50KB </span>","children":null,"spread":false},{"title":"52矩阵的范数.doc <span style='color:#111;'> 153.50KB </span>","children":null,"spread":false}],"spread":true},{"title":"6,矩阵分析","children":[{"title":"_desktop.ini <span style='color:#111;'> 8B </span>","children":null,"spread":false},{"title":"63矩阵的Kronecker积.doc <span style='color:#111;'> 318.50KB </span>","children":null,"spread":false},{"title":"64矩阵的微分和积分.doc <span style='color:#111;'> 86.00KB </span>","children":null,"spread":false},{"title":"62矩阵级数.doc <span style='color:#111;'> 80.50KB </span>","children":null,"spread":false},{"title":"61矩阵序列的极限.doc <span style='color:#111;'> 188.00KB </span>","children":null,"spread":false}],"spread":true},{"title":"矩阵轮习题","children":[{"title":"_desktop.ini <span style='color:#111;'> 8B </span>","children":null,"spread":false},{"title":"1-1,2,3.ppt <span style='color:#111;'> 1.08MB </span>","children":null,"spread":false},{"title":"1-4,5,6,7.ppt <span style='color:#111;'> 1.80MB </span>","children":null,"spread":false}],"spread":true},{"title":"1,线性空间与线性映射","children":[{"title":"正交变换与正交矩阵.doc <span style='color:#111;'> 135.00KB </span>","children":null,"spread":false},{"title":"_desktop.ini <span style='color:#111;'> 8B </span>","children":null,"spread":false},{"title":"线性变换与矩阵.doc <span style='color:#111;'> 216.00KB </span>","children":null,"spread":false},{"title":"1.3基、维数与坐标.doc <span style='color:#111;'> 542.50KB </span>","children":null,"spread":false},{"title":"1,1线性空间.doc <span style='color:#111;'> 284.50KB </span>","children":null,"spread":false},{"title":"1.2线性空间及其性质.doc <span style='color:#111;'> 250.00KB </span>","children":null,"spread":false},{"title":"1.5 线性变换与线性映射.doc <span style='color:#111;'> 282.00KB </span>","children":null,"spread":false},{"title":"1.4线性子空间.doc <span style='color:#111;'> 701.00KB </span>","children":null,"spread":false},{"title":"线性变换的运算.doc <span style='color:#111;'> 137.50KB </span>","children":null,"spread":false}],"spread":true},{"title":"3,对角阵与Jordan标准形","children":[{"title":"Jordan标准形2.doc <span style='color:#111;'> 206.00KB </span>","children":null,"spread":false},{"title":"_desktop.ini <span style='color:#111;'> 8B </span>","children":null,"spread":false},{"title":"Cayley-Hamilton定理 最小多项式.doc <span style='color:#111;'> 364.00KB </span>","children":null,"spread":false},{"title":"§3.4 Cayley-Hamilton定理 最小多项式.doc <span style='color:#111;'> 364.00KB </span>","children":null,"spread":false},{"title":"对称变换与对称矩阵.doc <span style='color:#111;'> 118.50KB </span>","children":null,"spread":false},{"title":"特征值与特征向量.doc <span style='color:#111;'> 711.50KB </span>","children":null,"spread":false},{"title":"Jordan标准形.doc <span style='color:#111;'> 416.50KB </span>","children":null,"spread":false},{"title":"不变因子与初等因子.doc <span style='color:#111;'> 419.00KB </span>","children":null,"spread":false}],"spread":true},{"title":"4.矩阵分解","children":[{"title":"4T.DOC <span style='color:#111;'> 64.00KB </span>","children":null,"spread":false},{"title":"_desktop.ini <span style='color:#111;'> 8B </span>","children":null,"spread":false},{"title":"4.4矩阵的奇异值分解.doc <span style='color:#111;'> 241.50KB </span>","children":null,"spread":false},{"title":"矩阵的 分解.doc <span style='color:#111;'> 396.50KB </span>","children":null,"spread":false},{"title":"矩阵的分解.doc <span style='color:#111;'> 517.00KB </span>","children":null,"spread":false},{"title":"阶矩阵的三角分解和LU分解.doc <span style='color:#111;'> 531.50KB </span>","children":null,"spread":false},{"title":"矩阵的QR分解.doc <span style='color:#111;'> 396.50KB </span>","children":null,"spread":false},{"title":"矩阵的满秩分解.doc <span style='color:#111;'> 155.50KB </span>","children":null,"spread":false},{"title":"4.3矩阵的满秩分解.doc <span style='color:#111;'> 155.50KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]