[{"title":"( 9 个子文件 9.19MB ) 基于大数据挖掘的电量预测(四份报告+源代码+数据集)","children":[{"title":"课程实践","children":[{"title":"'考虑电力经济相关性的全社会电量预测算法'.pdf <span style='color:#111;'> 900.62KB </span>","children":null,"spread":false},{"title":"良好1_课程实践报告.doc <span style='color:#111;'> 1.17MB </span>","children":null,"spread":false},{"title":"优秀_课程实践报告.doc <span style='color:#111;'> 1.33MB </span>","children":null,"spread":false},{"title":"数据集","children":[{"title":"PJME_hourly.csv <span style='color:#111;'> 3.88MB </span>","children":null,"spread":false}],"spread":true},{"title":"良好3_课程实践报告.doc <span style='color:#111;'> 1.22MB </span>","children":null,"spread":false},{"title":"'基于大数据挖掘电量预测方法的创新及应用'.pdf <span style='color:#111;'> 2.24MB </span>","children":null,"spread":false},{"title":"良好2_课程实践报告.doc <span style='color:#111;'> 1.23MB </span>","children":null,"spread":false},{"title":"源程序.py <span style='color:#111;'> 4.36KB </span>","children":null,"spread":false},{"title":"'梯度提升树在月售电量预测中的应用'.pdf <span style='color:#111;'> 1.56MB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]