Python数据分析-15个案例详解

上传者: YY007H | 上传时间: 2025-05-21 21:58:21 | 文件大小: 2.86MB | 文件类型: ZIP
在Python数据分析领域,掌握实战案例是提升技能的关键。"Python数据分析-15个案例详解"这一资源涵盖了多个学习阶段,从基础到进阶,旨在帮助用户深入理解和应用Python进行数据处理与分析。以下是对每个部分的详细解读: 1. **week02**: 这个部分可能介绍了Python数据分析的基础,包括导入数据(如CSV或Excel文件)使用pandas库,数据清洗(处理缺失值、异常值和重复数据),以及基本的数据操作,如切片、排序和聚合。 2. **week03**: 可能涉及更深入的数据探索,如描述性统计量计算、数据可视化(使用matplotlib和seaborn库),以及简单的数据预处理技术。 3. **week04**: 可能讲解了如何处理时间序列数据,包括日期和时间的处理,以及基于时间序列的分析,例如趋势分析、周期性检测等。 4. **week06**: 可能涵盖了数据分组和聚合,例如使用groupby函数对数据进行分类分析,以及透视表的创建。 5. **week07**: 可能涉及更复杂的统计建模,如线性回归、逻辑回归或其他机器学习算法的初步介绍,比如使用scikit-learn库。 6. **week08**: 可能讲解了数据清洗和预处理的高级技巧,如特征选择、标准化、归一化等,为后续的模型训练做好准备。 7. **week09**: 可能探讨了数据挖掘中的聚类分析,如K-means算法,或者分类算法,如决策树和随机森林。 8. **week11**: 可能涉及到数据可视化进阶,包括高级图表制作、交互式可视化工具(如plotly或bokeh)的使用,以及如何有效地传达数据分析结果。 9. **week15**: 可能是课程的高级部分,涵盖了复杂的数据分析项目,例如时间序列预测、推荐系统构建或深度学习在数据分析中的应用。 10. **案例分析**: 这部分可能是将前面所学知识应用于实际案例,比如社交媒体数据分析、销售预测、客户细分等,通过实践巩固理论知识。 在学习过程中,用户会逐步掌握Python数据分析的核心工具和概念,包括数据清洗、探索性数据分析、建模和预测,以及结果可视化。这些案例旨在提供实践经验,使学习者能够独立解决实际问题,并具备解决复杂数据分析任务的能力。

文件下载

资源详情

[{"title":"( 67 个子文件 2.86MB ) Python数据分析-15个案例详解","children":[{"title":"week11","children":[{"title":"bankloan.xls <span style='color:#111;'> 125.00KB </span>","children":null,"spread":false},{"title":"Logistic回归.py <span style='color:#111;'> 2.81KB </span>","children":null,"spread":false},{"title":"data2.txt <span style='color:#111;'> 128B </span>","children":null,"spread":false},{"title":"data1.txt <span style='color:#111;'> 719B </span>","children":null,"spread":false}],"spread":true},{"title":"week08","children":[{"title":"data","children":[{"title":"stock_px.csv <span style='color:#111;'> 99.03KB </span>","children":null,"spread":false},{"title":"tips.csv <span style='color:#111;'> 7.76KB </span>","children":null,"spread":false}],"spread":true},{"title":"数据分组.py <span style='color:#111;'> 12.17KB </span>","children":null,"spread":false}],"spread":true},{"title":"week06","children":[{"title":"数据处理.py <span style='color:#111;'> 17.47KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"principal_component.xls <span style='color:#111;'> 25.00KB </span>","children":null,"spread":false},{"title":"olivier.txt <span style='color:#111;'> 759B </span>","children":null,"spread":false},{"title":"electricity_data.xls <span style='color:#111;'> 5.50KB </span>","children":null,"spread":false},{"title":"foods-2011-10-03.json <span style='color:#111;'> 30.34MB </span>","children":null,"spread":false},{"title":"catering_sale.xls <span style='color:#111;'> 32.00KB </span>","children":null,"spread":false},{"title":"normalization_data.xls <span style='color:#111;'> 22.00KB </span>","children":null,"spread":false},{"title":"movies.dat <span style='color:#111;'> 167.29KB </span>","children":null,"spread":false},{"title":"sales.xls <span style='color:#111;'> 13.50KB </span>","children":null,"spread":false},{"title":"macrodata.csv <span style='color:#111;'> 17.81KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"week03","children":[{"title":"numpy.py <span style='color:#111;'> 7.14KB </span>","children":null,"spread":false}],"spread":true},{"title":"week15","children":[{"title":"ex15.txt <span style='color:#111;'> 288B </span>","children":null,"spread":false},{"title":"矩阵基础.py <span style='color:#111;'> 1.31KB </span>","children":null,"spread":false}],"spread":true},{"title":"week09","children":[{"title":"Amtrak.xls <span style='color:#111;'> 93.00KB </span>","children":null,"spread":false},{"title":"统计基础.py <span style='color:#111;'> 1.15KB </span>","children":null,"spread":false}],"spread":true},{"title":"案例分析","children":[{"title":"standardized.xls <span style='color:#111;'> 49.50KB </span>","children":null,"spread":false},{"title":"business_circle.xls <span style='color:#111;'> 48.00KB </span>","children":null,"spread":false},{"title":"基于基站定位数据的商圈.py <span style='color:#111;'> 2.31KB </span>","children":null,"spread":false},{"title":"股票指数构建.py <span style='color:#111;'> 1.38KB </span>","children":null,"spread":false},{"title":"电信客户流失分析.py <span style='color:#111;'> 3.41KB </span>","children":null,"spread":false}],"spread":true},{"title":"week04","children":[{"title":"weeksummary.csv <span style='color:#111;'> 87B </span>","children":null,"spread":false},{"title":"numpy常用函数.py <span style='color:#111;'> 4.36KB </span>","children":null,"spread":false},{"title":"numpy股价分析实践.py <span style='color:#111;'> 7.88KB </span>","children":null,"spread":false},{"title":"data.csv <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false}],"spread":true},{"title":"week07","children":[{"title":"figpath.png <span style='color:#111;'> 135.83KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"spx.csv <span style='color:#111;'> 146.59KB </span>","children":null,"spread":false},{"title":"tips.csv <span style='color:#111;'> 7.76KB </span>","children":null,"spread":false},{"title":"macrodata.csv <span style='color:#111;'> 17.81KB </span>","children":null,"spread":false},{"title":"Haiti.csv <span style='color:#111;'> 1.86MB </span>","children":null,"spread":false}],"spread":true},{"title":"figpath.svg <span style='color:#111;'> 12.93KB </span>","children":null,"spread":false},{"title":"数据可视化.py <span style='color:#111;'> 8.42KB </span>","children":null,"spread":false}],"spread":true},{"title":"week02","children":[{"title":"Python函数.py <span style='color:#111;'> 4.73KB </span>","children":null,"spread":false},{"title":"Python条件语句.py <span style='color:#111;'> 4.37KB </span>","children":null,"spread":false}],"spread":true},{"title":"week13","children":[{"title":"分类算法.py <span style='color:#111;'> 3.04KB </span>","children":null,"spread":false}],"spread":true},{"title":"week12","children":[{"title":"arima_data.xls <span style='color:#111;'> 18.00KB </span>","children":null,"spread":false},{"title":"stock_px.csv <span style='color:#111;'> 99.03KB </span>","children":null,"spread":false},{"title":"时间序列分析法.py <span style='color:#111;'> 8.79KB </span>","children":null,"spread":false}],"spread":true},{"title":"week14","children":[{"title":"ex14.csv <span style='color:#111;'> 737B </span>","children":null,"spread":false},{"title":"聚类算法.py <span style='color:#111;'> 5.94KB </span>","children":null,"spread":false}],"spread":true},{"title":"week05","children":[{"title":"data","children":[{"title":"ex2.csv <span style='color:#111;'> 42B </span>","children":null,"spread":false},{"title":"ex3.txt <span style='color:#111;'> 170B </span>","children":null,"spread":false},{"title":"ex1.csv <span style='color:#111;'> 58B </span>","children":null,"spread":false},{"title":"out.csv <span style='color:#111;'> 88B </span>","children":null,"spread":false},{"title":"workbook.xls <span style='color:#111;'> 5.50KB </span>","children":null,"spread":false},{"title":"frame_pickle <span style='color:#111;'> 923B </span>","children":null,"spread":false},{"title":"ex7.csv <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"test_file.csv <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"ex4.csv <span style='color:#111;'> 163B </span>","children":null,"spread":false},{"title":"csv_mindex.csv <span style='color:#111;'> 111B </span>","children":null,"spread":false},{"title":"ex6.csv <span style='color:#111;'> 612.17KB </span>","children":null,"spread":false},{"title":"ex5.csv <span style='color:#111;'> 78B </span>","children":null,"spread":false},{"title":"tseries.csv <span style='color:#111;'> 91B </span>","children":null,"spread":false},{"title":"ex3.csv <span style='color:#111;'> 169B </span>","children":null,"spread":false}],"spread":false},{"title":"mydata.csv <span style='color:#111;'> 32B </span>","children":null,"spread":false},{"title":"数据读取.py <span style='color:#111;'> 6.46KB </span>","children":null,"spread":false},{"title":"tseries.csv <span style='color:#111;'> 91B </span>","children":null,"spread":false},{"title":"Pandes_Dataframe.py <span style='color:#111;'> 2.91KB </span>","children":null,"spread":false}],"spread":true},{"title":"week01","children":[{"title":"Python3.6基础.py <span style='color:#111;'> 7.37KB </span>","children":null,"spread":false}],"spread":false},{"title":"week10","children":[{"title":"Advertising.csv <span style='color:#111;'> 4.45KB </span>","children":null,"spread":false},{"title":"线性回归分析.py <span style='color:#111;'> 3.42KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明