[{"title":"( 9 个子文件 737KB ) 基于CNN-LSTM算法的锂离子电池健康状态SOH精确估计:融合间接健康因子与NASA数据集的验证,基于CNN-LSTM的的锂离子电池健康状态SOH估计;\n主要算法如下:\n1、首先提取放电电压最低点时","children":[{"title":"2.jpg <span style='color:#111;'> 254.33KB </span>","children":null,"spread":false},{"title":"基于的锂离子电池健康状态估计一引言随着电动汽车和.doc <span style='color:#111;'> 2.00KB </span>","children":null,"spread":false},{"title":"1.jpg <span style='color:#111;'> 358.68KB </span>","children":null,"spread":false},{"title":"基于的锂离子电池健康状态估计一引言随着电动汽车和.txt <span style='color:#111;'> 2.42KB </span>","children":null,"spread":false},{"title":"基于的锂离子电池健康状态估计一.txt <span style='color:#111;'> 2.02KB </span>","children":null,"spread":false},{"title":"基于的锂离子电池健康状态估计一引言随着电.txt <span style='color:#111;'> 1.95KB </span>","children":null,"spread":false},{"title":"3.jpg <span style='color:#111;'> 44.52KB </span>","children":null,"spread":false},{"title":"基于的锂离子电池健康状态估计一引言随着.doc <span style='color:#111;'> 2.19KB </span>","children":null,"spread":false},{"title":"4.jpg <span style='color:#111;'> 139.42KB </span>","children":null,"spread":false}],"spread":true}]