基于YOLOv5与ReID的行人重识别系统:视频中行人检测与指定行人识别

上传者: YCuhHEbacbrM | 上传时间: 2025-09-12 23:53:18 | 文件大小: 688KB | 文件类型: ZIP
内容概要:本文详细介绍了基于YOLOv5和ReID模型的行人重识别系统的设计与实现。首先,利用YOLOv5进行实时行人检测,通过设置合理的置信度阈值来提高检测准确性。接着,使用OSNet作为ReID模型,提取行人的特征向量,并通过余弦相似度计算来进行精确的身份匹配。文中还讨论了特征归一化、颜色渐变显示等优化措施,以及针对不同场景的调整建议。最终,系统能够在复杂环境中快速定位并识别特定行人。 适合人群:具有一定深度学习基础的研究人员和技术开发者,尤其是从事计算机视觉领域的从业者。 使用场景及目标:适用于安防监控、智能交通等领域,旨在解决多摄像头环境下行人身份的连续跟踪与识别问题。具体应用场景包括但不限于公共场所的安全监控、失踪人口搜索等。 其他说明:文中提供了详细的代码片段和实施细节,帮助读者更好地理解和复现该系统。同时,强调了实际应用中的注意事项,如环境因素对检测效果的影响、模型选择依据及其优缺点等。

文件下载

资源详情

[{"title":"( 3 个子文件 688KB ) 基于YOLOv5与ReID的行人重识别系统:视频中行人检测与指定行人识别","children":[{"title":"基于Yolo方法的行人重识别演示系统:从视频中精确检测与识别指定行人.html <span style='color:#111;'> 418.93KB </span>","children":null,"spread":false},{"title":"796117906260.pdf <span style='color:#111;'> 109.02KB </span>","children":null,"spread":false},{"title":"计算机视觉","children":[{"title":"1.jpg <span style='color:#111;'> 298.56KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明