超弹性模型 Abaqus UMAT 子程序

上传者: Thibault87 | 上传时间: 2024-07-23 16:49:04 | 文件大小: 298KB | 文件类型: ZIP
在模拟复杂的材料行为时,Abaqus作为一款强大的有限元分析软件,提供了用户自定义材料(User-Defined Material,UMAT)子程序的功能,允许用户根据特定需求编写本构关系。"超弹性模型 Abaqus UMAT 子程序"主题涉及的是如何利用UMAT子程序来实现超弹性材料的模拟,尤其是对于复合材料这类具有非线性力学性能的材料。超弹性材料是指在大应变下仍能恢复原状的材料,常见于橡胶、生物软组织等。 Abaqus中的UMAT子程序是一个C或Fortran编写的程序,它定义了材料的行为,包括应力-应变关系、热效应等。在这个案例中,UMAT子程序将用于描述超弹性的本构行为,这涉及到非线性弹性力学的理论,如胡克定律的扩展形式。本构方程是描述材料内部状态与外部加载之间关系的基本方程,对于超弹性材料,可能需要考虑应变能函数、应力张量和应变张量之间的关系。 在UMAT子程序中,通常需要实现以下几个关键步骤: 1. **初始化**:设置初始条件,如初始应力和应变,以及材料参数。 2. **状态更新**:根据当前应变增量计算新的应力状态。这通常涉及到积分路径的追踪,如Green-Lagrange应变或Almansi应变。 3. **应力更新**:通过求解本构方程得到新的应力状态。对于超弹性材料,这可能涉及胡克定律的非线性版本,或者基于能量的方法。 4. **应变能密度函数**:定义材料的应变能密度函数,它是描述材料变形能量的关键。 5. **坐标系处理**:描述在全局坐标系和局部坐标系下的本构关系。在某些情况下,如纤维增强复合材料,局部坐标系可能更适于描述材料的定向特性。 6. **边界条件和加载**:处理与加载和约束相关的边界条件,确保它们在UMAT中得到正确应用。 7. **热效应**:如果超弹性材料有温度依赖性,还需要考虑热膨胀和热传导。 压缩包中的"UMAT-1.0.0"可能包含了UMAT子程序的源代码、编译脚本、测试用例以及相关文档。通过研究这些文件,用户可以理解如何在Abaqus中实现超弹性模型,并可能针对具体的复合材料进行调整和优化。此外,理解和调试UMAT子程序通常需要对有限元方法、非线性动力学以及编程有一定的基础。 "超弹性模型 Abaqus UMAT 子程序"是一个深入研究非线性材料行为、特别是复合材料的重要实践,它结合了数学、物理和计算机科学,对于工程设计和材料科学研究有着广泛的应用价值。

文件下载

资源详情

[{"title":"( 60 个子文件 298KB ) 超弹性模型 Abaqus UMAT 子程序","children":[{"title":"UMAT-1.0.0","children":[{"title":"LICENSE.txt <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false},{"title":"HOWTO.txt <span style='color:#111;'> 3.05KB </span>","children":null,"spread":false},{"title":"InputFiles","children":[{"title":"Cylinder","children":[{"title":"HexElements.inp <span style='color:#111;'> 508.59KB </span>","children":null,"spread":false},{"title":"CompHexUIL_Cyl.inp <span style='color:#111;'> 5.07KB </span>","children":null,"spread":false},{"title":"HexSets.inp <span style='color:#111;'> 3.52KB </span>","children":null,"spread":false},{"title":"CompHexBIL_Cyl.inp <span style='color:#111;'> 5.07KB </span>","children":null,"spread":false},{"title":"HexUNG_Cyl.inp <span style='color:#111;'> 5.25KB </span>","children":null,"spread":false},{"title":"HexUNL_Cyl.inp <span style='color:#111;'> 5.19KB </span>","children":null,"spread":false},{"title":"ShellNodes.inp <span style='color:#111;'> 144.78KB </span>","children":null,"spread":false},{"title":"HexUAG_Cyl.inp <span style='color:#111;'> 5.25KB </span>","children":null,"spread":false},{"title":"HexUAL_Cyl.inp <span style='color:#111;'> 5.19KB </span>","children":null,"spread":false},{"title":"HexNodes.inp <span style='color:#111;'> 579.13KB </span>","children":null,"spread":false},{"title":"HexRotations.inp <span style='color:#111;'> 1.59MB </span>","children":null,"spread":false},{"title":"ShellUIL_Cyl.inp <span style='color:#111;'> 4.49KB </span>","children":null,"spread":false},{"title":"CompHexUNG_Cyl.inp <span style='color:#111;'> 5.14KB </span>","children":null,"spread":false},{"title":"ShellUAL_Cyl.inp <span style='color:#111;'> 4.49KB </span>","children":null,"spread":false},{"title":"ShellSets.inp <span style='color:#111;'> 513B </span>","children":null,"spread":false},{"title":"ShellBIL_Cyl.inp <span style='color:#111;'> 4.49KB </span>","children":null,"spread":false},{"title":"ShellUNL_Cyl.inp <span style='color:#111;'> 4.49KB </span>","children":null,"spread":false},{"title":"ShellElements.inp <span style='color:#111;'> 82.03KB </span>","children":null,"spread":false},{"title":"HexUIL_Cyl.inp <span style='color:#111;'> 5.19KB </span>","children":null,"spread":false},{"title":"CompHexUAL_Cyl.inp <span style='color:#111;'> 5.07KB </span>","children":null,"spread":false},{"title":"CompHexUNL_Cyl.inp <span style='color:#111;'> 5.07KB </span>","children":null,"spread":false},{"title":"CompHexUAG_Cyl.inp <span style='color:#111;'> 5.14KB </span>","children":null,"spread":false},{"title":"HexBIL_Cyl.inp <span style='color:#111;'> 5.19KB </span>","children":null,"spread":false}],"spread":false},{"title":"OneElement","children":[{"title":"HexBIL.inp <span style='color:#111;'> 25.06KB </span>","children":null,"spread":false},{"title":"CompHexUIL.inp <span style='color:#111;'> 24.94KB </span>","children":null,"spread":false},{"title":"HexUAG.inp <span style='color:#111;'> 24.76KB </span>","children":null,"spread":false},{"title":"CompHexUAG.inp <span style='color:#111;'> 24.65KB </span>","children":null,"spread":false},{"title":"HexUNG.inp <span style='color:#111;'> 24.75KB </span>","children":null,"spread":false},{"title":"HexUAL.inp <span style='color:#111;'> 25.06KB </span>","children":null,"spread":false},{"title":"MemUNL.inp <span style='color:#111;'> 11.81KB </span>","children":null,"spread":false},{"title":"CompHexUNG.inp <span style='color:#111;'> 24.64KB </span>","children":null,"spread":false},{"title":"HexUIL.inp <span style='color:#111;'> 25.05KB </span>","children":null,"spread":false},{"title":"HexUNL.inp <span style='color:#111;'> 25.05KB </span>","children":null,"spread":false},{"title":"CompHexBIL.inp <span style='color:#111;'> 24.94KB </span>","children":null,"spread":false},{"title":"CompHexUAL.inp <span style='color:#111;'> 24.96KB </span>","children":null,"spread":false},{"title":"CompHexUNL.inp <span style='color:#111;'> 24.96KB </span>","children":null,"spread":false},{"title":"MemUIL.inp <span style='color:#111;'> 11.81KB </span>","children":null,"spread":false},{"title":"MemBIL.inp <span style='color:#111;'> 11.81KB </span>","children":null,"spread":false},{"title":"MemUAL.inp <span style='color:#111;'> 11.81KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"FortranFiles","children":[{"title":"Determinant.for <span style='color:#111;'> 292B </span>","children":null,"spread":false},{"title":"C_iso_UN.for <span style='color:#111;'> 3.72KB </span>","children":null,"spread":false},{"title":"sigma_aniso.for <span style='color:#111;'> 4.30KB </span>","children":null,"spread":false},{"title":"C_aniso_UA.for <span style='color:#111;'> 4.97KB </span>","children":null,"spread":false},{"title":"C_vol_UN.for <span style='color:#111;'> 3.45KB </span>","children":null,"spread":false},{"title":"C_aniso_UA_shells.for <span style='color:#111;'> 5.92KB </span>","children":null,"spread":false},{"title":"sigma_iso_shells.for <span style='color:#111;'> 2.75KB </span>","children":null,"spread":false},{"title":"sigma_iso.for <span style='color:#111;'> 3.07KB </span>","children":null,"spread":false},{"title":"sigma_vol.for <span style='color:#111;'> 2.75KB </span>","children":null,"spread":false},{"title":"C_aniso_UN.for <span style='color:#111;'> 3.89KB </span>","children":null,"spread":false},{"title":"C_iso_UA.for <span style='color:#111;'> 3.18KB </span>","children":null,"spread":false},{"title":"MatrixInv.for <span style='color:#111;'> 1.60KB </span>","children":null,"spread":false},{"title":"sigma_aniso_shells.for <span style='color:#111;'> 3.80KB </span>","children":null,"spread":false},{"title":"C_iso_UA_shells.for <span style='color:#111;'> 3.79KB </span>","children":null,"spread":false},{"title":"C_vol_UA.for <span style='color:#111;'> 2.60KB </span>","children":null,"spread":false},{"title":"UMAT_GOH.for <span style='color:#111;'> 8.13KB </span>","children":null,"spread":false},{"title":"arguments_uaniso.for <span style='color:#111;'> 4.41KB </span>","children":null,"spread":false},{"title":"arguments_sta.for <span style='color:#111;'> 5.60KB </span>","children":null,"spread":false},{"title":"UANISO_GOH.for <span style='color:#111;'> 4.65KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明