基于变分模态分解和SVM的滚动轴承故障诊断_王新.pdf

上传者: SparkQiang | 上传时间: 2021-05-06 16:03:23 | 文件大小: 1.07MB | 文件类型: PDF
针对滚动轴承振动信号的非平稳特征和现实中难以获得大量故障样本的实际情况,提出了基于变分模态 分解( Variational mode decomposition,VMD) 与支持向量机( Support vector machine,SVM) 相结合的滚动轴承故障诊断方法。 该方法融合了变分模态分解和支持向量机的优势,通过变分模态分解将滚动轴承振动信号分解成若干个本征模态函数分 量,轴承发生不同故障时,不同本征模态函数内的频带能量会发生变化,从包含有主要故障信息的模态分量中提取能量特 征作为SVM 的输入,判断轴承的工作状态和故障类型。试验结果表明,该方法在少量样本情况下仍能有效地对轴承的工

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明