timm(PyTorch图像模型)数据集.zip

上传者: MuRanstr | 上传时间: 2024-11-20 00:17:23 | 文件大小: 1.26MB | 文件类型: ZIP
在计算机视觉领域,数据集是训练和评估深度学习模型的基础。`timm`是一个流行的PyTorch库,它提供了大量的预训练图像模型,方便研究人员和开发者进行实验和应用。本项目"timm(PyTorch图像模型)数据集.zip"包含了一个`timm`库的实现,以及可能的数据集示例或配置文件。 `timm`库由Ross Girshick开发,它不仅集成了众多现有的PyTorch图像模型,如ResNet、VGG、EfficientNet等,还引入了一些最新的研究模型,如DeiT、Mixer等。该库的优势在于其简洁的API,使得模型的选择、加载和微调变得非常容易。例如,你可以通过简单的代码来加载一个预训练的ResNet模型: ```python from timm import create_model model = create_model('resnet50', pretrained=True) ``` 描述中的"计算机视觉数据集"可能指的是使用`timm`库进行训练或验证所需的数据集。常见的计算机视觉数据集有ImageNet、COCO、CIFAR等,这些数据集包含了丰富的图像类别,适合用于图像分类、目标检测、语义分割等任务。在实际应用中,用户需要根据自己的需求将这些数据集适配到`timm`提供的模型上。 `pytorch`标签表明了这个项目是基于PyTorch框架实现的。PyTorch是Facebook开源的一个深度学习库,以其灵活性和易用性而受到广大用户的喜爱。它支持动态计算图,使得模型的构建和调试更加直观。 `pytorch-image-models-master`可能是`timm`库的源代码主分支。这个文件可能包含了模型定义、训练脚本、评估工具等。用户可以查看源码了解模型的具体实现,或者对其进行修改以适应特定的任务需求。 在使用`timm`进行模型训练时,通常需要遵循以下步骤: 1. 安装`timm`库:通过`pip install timm`命令安装。 2. 加载数据集:根据所选数据集的格式,使用相应的库(如`torchvision.datasets`)加载数据,并将其转换为PyTorch DataLoader。 3. 创建模型:使用`timm.create_model`函数选择并创建模型,指定预训练与否。 4. 设置优化器:根据模型结构和任务选择合适的优化器,如SGD、Adam等。 5. 训练模型:迭代训练数据,更新模型参数。 6. 评估模型:在验证集上评估模型性能,根据结果调整模型或训练策略。 对于初学者,理解并掌握`timm`库可以帮助快速上手图像识别任务,对于专业人士,`timm`提供了丰富的模型选择,有助于探索和比较不同模型的性能。通过不断实践和调整,可以在计算机视觉领域取得更好的成果。

文件下载

资源详情

[{"title":"( 394 个子文件 1.26MB ) timm(PyTorch图像模型)数据集.zip","children":[{"title":"setup.cfg <span style='color:#111;'> 88B </span>","children":null,"spread":false},{"title":"results-imagenet-r.csv <span style='color:#111;'> 51.29KB </span>","children":null,"spread":false},{"title":"results-sketch.csv <span style='color:#111;'> 51.29KB </span>","children":null,"spread":false},{"title":"results-imagenet-a.csv <span style='color:#111;'> 51.01KB </span>","children":null,"spread":false},{"title":"results-imagenetv2-matched-frequency.csv <span style='color:#111;'> 50.21KB </span>","children":null,"spread":false},{"title":"results-imagenet-real.csv <span style='color:#111;'> 49.30KB </span>","children":null,"spread":false},{"title":"benchmark-infer-amp-nchw-pt110-cu113-rtx3090.csv <span style='color:#111;'> 43.49KB </span>","children":null,"spread":false},{"title":"benchmark-infer-amp-nhwc-pt110-cu113-rtx3090.csv <span style='color:#111;'> 42.99KB </span>","children":null,"spread":false},{"title":"results-imagenet.csv <span style='color:#111;'> 39.26KB </span>","children":null,"spread":false},{"title":"results-imagenet-a-clean.csv <span style='color:#111;'> 38.70KB </span>","children":null,"spread":false},{"title":"results-imagenet-r-clean.csv <span style='color:#111;'> 38.70KB </span>","children":null,"spread":false},{"title":"benchmark-infer-amp-nchw-pt111-cu113-rtx3090.csv <span style='color:#111;'> 35.12KB </span>","children":null,"spread":false},{"title":"benchmark-infer-amp-nhwc-pt111-cu113-rtx3090.csv <span style='color:#111;'> 34.69KB </span>","children":null,"spread":false},{"title":"benchmark-train-amp-nchw-pt111-cu113-rtx3090.csv <span style='color:#111;'> 33.99KB </span>","children":null,"spread":false},{"title":"benchmark-train-amp-nchw-pt110-cu113-rtx3090.csv <span style='color:#111;'> 33.98KB </span>","children":null,"spread":false},{"title":"benchmark-train-amp-nhwc-pt111-cu113-rtx3090.csv <span style='color:#111;'> 33.85KB </span>","children":null,"spread":false},{"title":"benchmark-train-amp-nhwc-pt110-cu113-rtx3090.csv <span style='color:#111;'> 33.80KB </span>","children":null,"spread":false},{"title":"model_metadata-in1k.csv <span style='color:#111;'> 11.79KB </span>","children":null,"spread":false},{"title":".gitattributes <span style='color:#111;'> 31B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.23KB </span>","children":null,"spread":false},{"title":"MANIFEST.in <span style='color:#111;'> 34B </span>","children":null,"spread":false},{"title":"tables.js <span style='color:#111;'> 162B </span>","children":null,"spread":false},{"title":"imagenet_real_labels.json <span style='color:#111;'> 379.37KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 11.08KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 43.83KB </span>","children":null,"spread":false},{"title":"archived_changes.md <span style='color:#111;'> 22.12KB </span>","children":null,"spread":false},{"title":"tf-efficientnet.md <span style='color:#111;'> 19.44KB </span>","children":null,"spread":false},{"title":"tf-efficientnet.md <span style='color:#111;'> 17.07KB </span>","children":null,"spread":false},{"title":"gloun-resnet.md <span style='color:#111;'> 16.88KB </span>","children":null,"spread":false},{"title":"regnety.md <span style='color:#111;'> 16.41KB </span>","children":null,"spread":false},{"title":"noisy-student.md <span style='color:#111;'> 16.23KB </span>","children":null,"spread":false},{"title":"dla.md <span style='color:#111;'> 16.11KB </span>","children":null,"spread":false},{"title":"regnetx.md <span style='color:#111;'> 15.83KB </span>","children":null,"spread":false},{"title":"gloun-resnet.md <span style='color:#111;'> 14.50KB </span>","children":null,"spread":false},{"title":"advprop.md <span style='color:#111;'> 14.39KB </span>","children":null,"spread":false},{"title":"regnety.md <span style='color:#111;'> 14.05KB </span>","children":null,"spread":false},{"title":"noisy-student.md <span style='color:#111;'> 13.84KB </span>","children":null,"spread":false},{"title":"dla.md <span style='color:#111;'> 13.77KB </span>","children":null,"spread":false},{"title":"regnetx.md <span style='color:#111;'> 13.48KB </span>","children":null,"spread":false},{"title":"resnest.md <span style='color:#111;'> 13.18KB </span>","children":null,"spread":false},{"title":"hrnet.md <span style='color:#111;'> 12.57KB </span>","children":null,"spread":false},{"title":"efficientnet.md <span style='color:#111;'> 12.50KB </span>","children":null,"spread":false},{"title":"resnet.md <span style='color:#111;'> 12.33KB </span>","children":null,"spread":false},{"title":"advprop.md <span style='color:#111;'> 12.01KB </span>","children":null,"spread":false},{"title":"models.md <span style='color:#111;'> 11.74KB </span>","children":null,"spread":false},{"title":"vision-transformer.md <span style='color:#111;'> 11.61KB </span>","children":null,"spread":false},{"title":"tf-mobilenet-v3.md <span style='color:#111;'> 11.41KB </span>","children":null,"spread":false},{"title":"changes.md <span style='color:#111;'> 11.37KB </span>","children":null,"spread":false},{"title":"resnest.md <span style='color:#111;'> 10.82KB </span>","children":null,"spread":false},{"title":"tresnet.md <span style='color:#111;'> 10.28KB </span>","children":null,"spread":false},{"title":"densenet.md <span style='color:#111;'> 10.28KB </span>","children":null,"spread":false},{"title":"hrnet.md <span style='color:#111;'> 10.22KB </span>","children":null,"spread":false},{"title":"efficientnet.md <span style='color:#111;'> 10.14KB </span>","children":null,"spread":false},{"title":"big-transfer.md <span style='color:#111;'> 10.04KB </span>","children":null,"spread":false},{"title":"resnet.md <span style='color:#111;'> 9.98KB </span>","children":null,"spread":false},{"title":"resnet-d.md <span style='color:#111;'> 9.78KB </span>","children":null,"spread":false},{"title":"res2net.md <span style='color:#111;'> 9.78KB </span>","children":null,"spread":false},{"title":"dpn.md <span style='color:#111;'> 9.27KB </span>","children":null,"spread":false},{"title":"vision-transformer.md <span style='color:#111;'> 9.23KB </span>","children":null,"spread":false},{"title":"legacy-se-resnet.md <span style='color:#111;'> 9.21KB </span>","children":null,"spread":false},{"title":"tf-efficientnet-lite.md <span style='color:#111;'> 9.11KB </span>","children":null,"spread":false},{"title":"ecaresnet.md <span style='color:#111;'> 9.10KB </span>","children":null,"spread":false},{"title":"tf-mobilenet-v3.md <span style='color:#111;'> 9.02KB </span>","children":null,"spread":false},{"title":"swsl-resnext.md <span style='color:#111;'> 8.69KB </span>","children":null,"spread":false},{"title":"ssl-resnext.md <span style='color:#111;'> 8.62KB </span>","children":null,"spread":false},{"title":"tf-efficientnet-condconv.md <span style='color:#111;'> 8.61KB </span>","children":null,"spread":false},{"title":"mobilenet-v2.md <span style='color:#111;'> 8.49KB </span>","children":null,"spread":false},{"title":"ig-resnext.md <span style='color:#111;'> 8.20KB </span>","children":null,"spread":false},{"title":"tresnet.md <span style='color:#111;'> 7.93KB </span>","children":null,"spread":false},{"title":"densenet.md <span style='color:#111;'> 7.92KB </span>","children":null,"spread":false},{"title":"rexnet.md <span style='color:#111;'> 7.73KB </span>","children":null,"spread":false},{"title":"big-transfer.md <span style='color:#111;'> 7.66KB </span>","children":null,"spread":false},{"title":"resnext.md <span style='color:#111;'> 7.53KB </span>","children":null,"spread":false},{"title":"efficientnet-pruned.md <span style='color:#111;'> 7.51KB </span>","children":null,"spread":false},{"title":"resnet-d.md <span style='color:#111;'> 7.43KB </span>","children":null,"spread":false},{"title":"res2net.md <span style='color:#111;'> 7.41KB </span>","children":null,"spread":false},{"title":"dpn.md <span style='color:#111;'> 6.93KB </span>","children":null,"spread":false},{"title":"xception.md <span style='color:#111;'> 6.89KB </span>","children":null,"spread":false},{"title":"legacy-se-resnext.md <span style='color:#111;'> 6.86KB </span>","children":null,"spread":false},{"title":"seresnext.md <span style='color:#111;'> 6.84KB </span>","children":null,"spread":false},{"title":"legacy-se-resnet.md <span style='color:#111;'> 6.84KB </span>","children":null,"spread":false},{"title":"mixnet.md <span style='color:#111;'> 6.79KB </span>","children":null,"spread":false},{"title":"gloun-resnext.md <span style='color:#111;'> 6.75KB </span>","children":null,"spread":false},{"title":"ecaresnet.md <span style='color:#111;'> 6.74KB </span>","children":null,"spread":false},{"title":"tf-efficientnet-lite.md <span style='color:#111;'> 6.72KB </span>","children":null,"spread":false},{"title":"swsl-resnet.md <span style='color:#111;'> 6.44KB </span>","children":null,"spread":false},{"title":"ssl-resnet.md <span style='color:#111;'> 6.40KB </span>","children":null,"spread":false},{"title":"gloun-seresnext.md <span style='color:#111;'> 6.37KB </span>","children":null,"spread":false},{"title":"mobilenet-v3.md <span style='color:#111;'> 6.36KB </span>","children":null,"spread":false},{"title":"swsl-resnext.md <span style='color:#111;'> 6.30KB </span>","children":null,"spread":false},{"title":"ssl-resnext.md <span style='color:#111;'> 6.23KB </span>","children":null,"spread":false},{"title":"tf-efficientnet-condconv.md <span style='color:#111;'> 6.22KB </span>","children":null,"spread":false},{"title":"selecsls.md <span style='color:#111;'> 6.18KB </span>","children":null,"spread":false},{"title":"mobilenet-v2.md <span style='color:#111;'> 6.12KB </span>","children":null,"spread":false},{"title":"tf-mixnet.md <span style='color:#111;'> 6.06KB </span>","children":null,"spread":false},{"title":"feature_extraction.md <span style='color:#111;'> 6.01KB </span>","children":null,"spread":false},{"title":"ig-resnext.md <span style='color:#111;'> 5.82KB </span>","children":null,"spread":false},{"title":"adversarial-inception-v3.md <span style='color:#111;'> 5.72KB </span>","children":null,"spread":false},{"title":"mnasnet.md <span style='color:#111;'> 5.65KB </span>","children":null,"spread":false},{"title":"se-resnet.md <span style='color:#111;'> 5.63KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明