基于B站 @林粒粒呀 老师Python数据分析课程的笔记,包括Python基础知识,以及数据读取、评估、清洗、分析、可视

上传者: Mmnnnbb123 | 上传时间: 2025-10-30 10:25:37 | 文件大小: 14.96MB | 文件类型: ZIP
随着数据分析领域的日益火热,掌握Python数据分析成为了许多数据科学家和工程师的必备技能。本次分享的内容来自B站知名教育博主@林粒粒呀的Python数据分析课程。课程内容丰富全面,涵盖了Python基础知识以及数据分析的多个重要环节。 Python基础知识是数据分析的重要基石。Python作为一种高级编程语言,以其简洁明了的语法和强大的社区支持,成为了数据分析的首选工具之一。Python基础知识包括但不限于变量、数据类型、控制结构、函数定义、面向对象编程等。掌握了这些基础,便能够在后续的数据处理中得心应手。 数据读取是数据分析的第一步。在实际工作中,数据往往存储在多种格式的文件中,比如CSV、Excel、JSON等。因此,能够熟练使用Python读取这些文件并将其加载到数据分析环境中至关重要。在本课程中,@林粒粒呀老师将教授如何使用Python内置的库如pandas来读取各种格式的数据文件,并理解数据结构与数据框架的概念。 数据评估是确保数据质量的关键环节。在拿到数据之后,必须对其进行全面的评估,包括数据的完整性、准确性以及是否存在异常值等。评估之后,对于发现的问题进行清洗是数据分析中不可或缺的步骤。数据清洗可能包括处理缺失值、去除重复项、修正错误以及格式转换等操作。在本课程中,学生将学习到如何运用pandas进行有效的数据清洗,为后续分析打下坚实的基础。 数据分许是核心环节之一。数据分析旨在通过统计方法对数据进行解读,找出数据之间的关联性、趋势或者模式。在本课程中,@林粒粒呀老师将结合案例,教授学生如何进行数据的统计分析和假设检验,使用Python中的科学计算库如NumPy和SciPy进行数据分析。 数据可视化是将分析结果以图表的形式直观呈现给观众。一个良好的可视化不仅能够帮助数据分析人员快速理解数据,也便于向非专业人员展示分析结论。在课程中,学生将学习如何使用matplotlib、seaborn等可视化库,将复杂的数据分析结果转化为易于理解的图表,如柱状图、折线图、散点图以及热力图等。 通过本课程的学习,学员不仅能够掌握Python在数据分析方面的应用,更能熟悉数据分析的全流程。从数据的读取、评估、清洗到分析和可视化,每一步都至关重要。此外,本课程内容不仅限于理论讲解,还包括了大量的实战练习,帮助学员巩固所学知识,提高解决实际问题的能力。 @林粒粒呀老师的Python数据分析课程是一门全面且实用的课程,无论是对于数据分析新手还是希望提升自我技能的数据分析师来说,都是不可多得的学习资源。通过系统的学习,学员将能够快速地提升自己的数据分析技能,为职业发展奠定坚实的基础。

文件下载

资源详情

[{"title":"( 127 个子文件 14.96MB ) 基于B站 @林粒粒呀 老师Python数据分析课程的笔记,包括Python基础知识,以及数据读取、评估、清洗、分析、可视","children":[{"title":"credits.csv <span style='color:#111;'> 3.64MB </span>","children":null,"spread":false},{"title":"titles.csv <span style='color:#111;'> 1.93MB </span>","children":null,"spread":false},{"title":"penguins_cleaned.csv <span style='color:#111;'> 14.96KB </span>","children":null,"spread":false},{"title":"penguins.csv <span style='color:#111;'> 13.20KB </span>","children":null,"spread":false},{"title":"penguins.csv <span style='color:#111;'> 13.20KB </span>","children":null,"spread":false},{"title":"Iris_cleaned.csv <span style='color:#111;'> 3.38KB </span>","children":null,"spread":false},{"title":"Iris.csv <span style='color:#111;'> 3.28KB </span>","children":null,"spread":false},{"title":"height2.csv <span style='color:#111;'> 410B </span>","children":null,"spread":false},{"title":"temperature.csv <span style='color:#111;'> 310B </span>","children":null,"spread":false},{"title":"height.csv <span style='color:#111;'> 134B </span>","children":null,"spread":false},{"title":"05 项目实战 _ 可视化帕默群岛企鹅数据(空白版).ipynb <span style='color:#111;'> 2.21MB </span>","children":null,"spread":false},{"title":"05 项目实战 _ 可视化帕默群岛企鹅数据(空白版)-checkpoint.ipynb <span style='color:#111;'> 2.21MB </span>","children":null,"spread":false},{"title":"6.79_data_visualization_multi-variables.ipynb <span style='color:#111;'> 1.22MB </span>","children":null,"spread":false},{"title":"6.79_data_visualization_multi-variables-checkpoint.ipynb <span style='color:#111;'> 1.22MB </span>","children":null,"spread":false},{"title":"05 项目实战 _ 可视化帕默群岛企鹅数据(参考版).ipynb <span style='color:#111;'> 1.06MB </span>","children":null,"spread":false},{"title":"05 项目实战 _ 可视化帕默群岛企鹅数据(参考版)-checkpoint.ipynb <span style='color:#111;'> 1.06MB </span>","children":null,"spread":false},{"title":"05 项目实战 _ 可视化帕默群岛企鹅数据(供参考)-checkpoint.ipynb <span style='color:#111;'> 1.06MB </span>","children":null,"spread":false},{"title":"04 可视化数据 _ 玩转多个变量数据-checkpoint.ipynb <span style='color:#111;'> 815.27KB </span>","children":null,"spread":false},{"title":"6.79_source_code-checkpoint.ipynb <span style='color:#111;'> 815.27KB </span>","children":null,"spread":false},{"title":"3.23_read_csv.ipynb <span style='color:#111;'> 367.30KB </span>","children":null,"spread":false},{"title":"02 项目实战 _ 分析鸢尾花种类数据(空白版).ipynb <span style='color:#111;'> 360.71KB </span>","children":null,"spread":false},{"title":"02 项目实战 _ 分析鸢尾花种类数据(空白版)-checkpoint.ipynb <span style='color:#111;'> 360.69KB </span>","children":null,"spread":false},{"title":"6.78_data_visualization_two_variables.ipynb <span style='color:#111;'> 279.04KB </span>","children":null,"spread":false},{"title":"6.78_data_visualization_two_variables-checkpoint.ipynb <span style='color:#111;'> 279.04KB </span>","children":null,"spread":false},{"title":"02 项目实战 _ 分析鸢尾花种类数据(供参考).ipynb <span style='color:#111;'> 227.61KB </span>","children":null,"spread":false},{"title":"02 项目实战 _ 分析鸢尾花种类数据(供参考)-checkpoint.ipynb <span style='color:#111;'> 227.31KB </span>","children":null,"spread":false},{"title":"02 项目实战 _ 分析鸢尾花种类数据(供参考)-checkpoint.ipynb <span style='color:#111;'> 227.30KB </span>","children":null,"spread":false},{"title":"6.78_source_code-checkpoint.ipynb <span style='color:#111;'> 178.80KB </span>","children":null,"spread":false},{"title":"03 可视化数据 _ 玩转两个变量数据-checkpoint.ipynb <span style='color:#111;'> 178.78KB </span>","children":null,"spread":false},{"title":"6.77_data_visualization_single_variable-checkpoint.ipynb <span style='color:#111;'> 167.65KB </span>","children":null,"spread":false},{"title":"6.77_data_visualization_single_variable.ipynb <span style='color:#111;'> 157.07KB </span>","children":null,"spread":false},{"title":"04 项目实战 _ 整理Netflix电影演员评分数据(供参考).ipynb <span style='color:#111;'> 149.50KB </span>","children":null,"spread":false},{"title":"06 项目实战 _ 评估和清理电商销售数据(空白版).ipynb <span style='color:#111;'> 130.02KB </span>","children":null,"spread":false},{"title":"7.82_mining_info_with_hypothesis_testing-checkpoint.ipynb <span style='color:#111;'> 107.02KB </span>","children":null,"spread":false},{"title":"7.82_mining_info_with_hypothesis_testing.ipynb <span style='color:#111;'> 107.02KB </span>","children":null,"spread":false},{"title":"6.77_source_code-checkpoint.ipynb <span style='color:#111;'> 99.41KB </span>","children":null,"spread":false},{"title":"6.75_source_code-checkpoint.ipynb <span style='color:#111;'> 99.40KB </span>","children":null,"spread":false},{"title":"5.34_merge_data.ipynb <span style='color:#111;'> 95.20KB </span>","children":null,"spread":false},{"title":"2.15_pandas_dataframe_with_data.ipynb <span style='color:#111;'> 82.66KB </span>","children":null,"spread":false},{"title":"6.78_blank_version_for_review-checkpoint.ipynb <span style='color:#111;'> 77.76KB </span>","children":null,"spread":false},{"title":"4.29_clean_dirty_data.ipynb <span style='color:#111;'> 71.07KB </span>","children":null,"spread":false},{"title":"2.13_pandas_dataframe.ipynb <span style='color:#111;'> 60.43KB </span>","children":null,"spread":false},{"title":"7.82_source_code-checkpoint.ipynb <span style='color:#111;'> 58.01KB </span>","children":null,"spread":false},{"title":"01 分析数据 _ 用假设检验挖掘信息宝藏-checkpoint.ipynb <span style='color:#111;'> 58.00KB </span>","children":null,"spread":false},{"title":"4.28_clean_messy_data.ipynb <span style='color:#111;'> 43.83KB </span>","children":null,"spread":false},{"title":"4.25_evaluate_data_get_started.ipynb <span style='color:#111;'> 40.28KB </span>","children":null,"spread":false},{"title":"5.36_shape_data_extended.ipynb <span style='color:#111;'> 37.91KB </span>","children":null,"spread":false},{"title":"4.27_clean_data_index&columns.ipynb <span style='color:#111;'> 35.61KB </span>","children":null,"spread":false},{"title":"5.35_shape_data.ipynb <span style='color:#111;'> 34.35KB </span>","children":null,"spread":false},{"title":"ndarray-checkpoint.ipynb <span style='color:#111;'> 34.13KB </span>","children":null,"spread":false},{"title":"6.74_explore_data_descriptive_statistics_dig_info.ipynb <span style='color:#111;'> 25.74KB </span>","children":null,"spread":false},{"title":"6.74_explore_data_descriptive_statistics_dig_info-checkpoint.ipynb <span style='color:#111;'> 25.74KB </span>","children":null,"spread":false},{"title":"6.77_blank_version_for_review-checkpoint.ipynb <span style='color:#111;'> 21.15KB </span>","children":null,"spread":false},{"title":"2.9_pandas_series.ipynb <span style='color:#111;'> 19.57KB </span>","children":null,"spread":false},{"title":"4.30_save_cleaned_data.ipynb <span style='color:#111;'> 19.00KB </span>","children":null,"spread":false},{"title":"2.17_pandas_dataframe_with_data_extended.ipynb <span style='color:#111;'> 17.22KB </span>","children":null,"spread":false},{"title":"3.21_read_json.ipynb <span style='color:#111;'> 16.82KB </span>","children":null,"spread":false},{"title":"6.74_source_code-checkpoint.ipynb <span style='color:#111;'> 16.69KB </span>","children":null,"spread":false},{"title":"6.74_blank_version_for_review-checkpoint.ipynb <span style='color:#111;'> 16.42KB </span>","children":null,"spread":false},{"title":"2.11_pandas_series_extended.ipynb <span style='color:#111;'> 14.79KB </span>","children":null,"spread":false},{"title":"2.7_numpy_array_extended.ipynb <span style='color:#111;'> 12.20KB </span>","children":null,"spread":false},{"title":"4.26_clean_data.ipynb <span style='color:#111;'> 7.85KB </span>","children":null,"spread":false},{"title":"7.81_hypothetical_test.ipynb <span style='color:#111;'> 7.17KB </span>","children":null,"spread":false},{"title":"6.76_data_visualization_chart_extended.ipynb <span style='color:#111;'> 6.70KB </span>","children":null,"spread":false},{"title":"6.76_data_visualization_chart_extended-checkpoint.ipynb <span style='color:#111;'> 6.70KB </span>","children":null,"spread":false},{"title":"TERMINOLOGY-checkpoint.ipynb <span style='color:#111;'> 6.52KB </span>","children":null,"spread":false},{"title":"7.81_hypothetical_test-checkpoint.ipynb <span style='color:#111;'> 6.52KB </span>","children":null,"spread":false},{"title":"4.32_evaluate_and_clean_data_manual.ipynb <span style='color:#111;'> 5.83KB </span>","children":null,"spread":false},{"title":"3.20_dataformat_json.ipynb <span style='color:#111;'> 4.80KB </span>","children":null,"spread":false},{"title":"3.19_retrieve_data.ipynb <span style='color:#111;'> 4.56KB </span>","children":null,"spread":false},{"title":"6.75_data_visualization_chart.ipynb <span style='color:#111;'> 4.42KB </span>","children":null,"spread":false},{"title":"6.75_data_visualization_chart-checkpoint.ipynb <span style='color:#111;'> 4.27KB </span>","children":null,"spread":false},{"title":"3.22_dataformat_csv.ipynb <span style='color:#111;'> 4.24KB </span>","children":null,"spread":false},{"title":"4.24_evaluate_data_criteria.ipynb <span style='color:#111;'> 4.17KB </span>","children":null,"spread":false},{"title":"6.72_Statistics_basics.ipynb <span style='color:#111;'> 4.17KB </span>","children":null,"spread":false},{"title":"6.72_Statistics_basics-checkpoint.ipynb <span style='color:#111;'> 4.16KB </span>","children":null,"spread":false},{"title":"2.4_Markdown和LaTex入门.ipynb <span style='color:#111;'> 3.89KB </span>","children":null,"spread":false},{"title":"6.73_statistics_basics_describe_numerical_data.ipynb <span style='color:#111;'> 3.50KB </span>","children":null,"spread":false},{"title":"04 项目实战 _ 整理Netflix电影演员评分数据(空白版).ipynb <span style='color:#111;'> 2.92KB </span>","children":null,"spread":false},{"title":"4.33_upload_files_to_github.ipynb <span style='color:#111;'> 2.69KB </span>","children":null,"spread":false},{"title":"index-checkpoint.ipynb <span style='color:#111;'> 2.36KB </span>","children":null,"spread":false},{"title":"05 项目实战 _ 可视化帕默群岛企鹅数据(空白版)-checkpoint.ipynb <span style='color:#111;'> 1.91KB </span>","children":null,"spread":false},{"title":"02 项目实战 _ 分析鸢尾花种类数据(空白版)-checkpoint.ipynb <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"4.31_more_dataset_for_data_analysis.ipynb <span style='color:#111;'> 1.24KB </span>","children":null,"spread":false},{"title":"6.73_statistics_basics_describe_numerical_data-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 34.33KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 886B </span>","children":null,"spread":false},{"title":"可视化帕默群岛企鹅数据-zyf.pdf <span style='color:#111;'> 1.91MB </span>","children":null,"spread":false},{"title":"假设检验项目实战-zyf.pdf <span style='color:#111;'> 811.16KB </span>","children":null,"spread":false},{"title":"26_object_oriented_programming.py <span style='color:#111;'> 7.05KB </span>","children":null,"spread":false},{"title":"34&35_test.py <span style='color:#111;'> 6.83KB </span>","children":null,"spread":false},{"title":"19_dictionary.py <span style='color:#111;'> 6.12KB </span>","children":null,"spread":false},{"title":"2.3_use_jupyter_notebook.py <span style='color:#111;'> 5.72KB </span>","children":null,"spread":false},{"title":"2.4_Markdown&LaTex.py <span style='color:#111;'> 4.62KB </span>","children":null,"spread":false},{"title":"31_file_read.py <span style='color:#111;'> 4.58KB </span>","children":null,"spread":false},{"title":"2.5_numpy_array.py <span style='color:#111;'> 3.53KB </span>","children":null,"spread":false},{"title":"29_class_inheritance.py <span style='color:#111;'> 3.10KB </span>","children":null,"spread":false},{"title":"36_Higher_order_functions&anonymous_functions.py <span style='color:#111;'> 2.76KB </span>","children":null,"spread":false},{"title":"33_error_fixing.py <span style='color:#111;'> 2.54KB </span>","children":null,"spread":false},{"title":"25_module.py <span style='color:#111;'> 2.49KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明