YOLOv8-deepsort 实现智能车辆目标检测+车辆跟踪+车辆计数

上传者: Little_Carter | 上传时间: 2023-12-21 22:39:16 | 文件大小: 293.89MB | 文件类型: ZIP
本资源纯属免费,不收任何钱和任何积分,纯粹为爱发电,本资源已经为大家整合好了的,看我的博客部署好直接用:https://blog.csdn.net/Little_Carter/article/details/133610076?spm=1001.2014.3001.5501 资源原本项目源码地址:https://github.com/MuhammadMoinFaisal/YOLOv8-DeepSORT-Object-Tracking 本资源提供了基于YOLOv8-deepsort算法的智能车辆目标检测、车辆跟踪和车辆计数的实现方案。首先,利用YOLOv8算法对视频中的车辆目标进行检测,并对检测到的目标进行标记。然后,通过deepsort算法对标记的车辆目标进行跟踪,实现车辆目标的持续跟踪。最后,根据跟踪结果对车辆数量进行统计,实现车辆计数功能。本资源提供了完整的代码实现和详细的使用说明,帮助读者快速掌握基于YOLOv8-deepsort的智能车辆目标检测、车辆跟踪和车辆计数技术。

文件下载

资源详情

[{"title":"( 349 个子文件 293.89MB ) YOLOv8-deepsort 实现智能车辆目标检测+车辆跟踪+车辆计数","children":[{"title":"setup.cfg <span style='color:#111;'> 1.74KB </span>","children":null,"spread":false},{"title":"config <span style='color:#111;'> 332B </span>","children":null,"spread":false},{"title":"description <span style='color:#111;'> 73B </span>","children":null,"spread":false},{"title":"exclude <span style='color:#111;'> 240B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 2.20KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 89B </span>","children":null,"spread":false},{"title":".gitkeep <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"HEAD <span style='color:#111;'> 238B </span>","children":null,"spread":false},{"title":"HEAD <span style='color:#111;'> 238B </span>","children":null,"spread":false},{"title":"HEAD <span style='color:#111;'> 30B </span>","children":null,"spread":false},{"title":"HEAD <span style='color:#111;'> 21B </span>","children":null,"spread":false},{"title":"pack-a54be353174391969d7597a49d5880a6351e7733.idx <span style='color:#111;'> 12.07KB </span>","children":null,"spread":false},{"title":"MANIFEST.in <span style='color:#111;'> 113B </span>","children":null,"spread":false},{"title":"index <span style='color:#111;'> 11.29KB </span>","children":null,"spread":false},{"title":"YOLOv8_Detection_Tracking_CustomData_Complete.ipynb <span style='color:#111;'> 21.58MB </span>","children":null,"spread":false},{"title":"YOLOv8_DeepSORT_TRACKING_SCRIPT.ipynb <span style='color:#111;'> 15.85MB </span>","children":null,"spread":false},{"title":"train.jpg <span style='color:#111;'> 58.93KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"predict.log <span style='color:#111;'> 655B </span>","children":null,"spread":false},{"title":"main <span style='color:#111;'> 238B </span>","children":null,"spread":false},{"title":"main <span style='color:#111;'> 41B </span>","children":null,"spread":false},{"title":"CONTRIBUTING.md <span style='color:#111;'> 5.59KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 4.83KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.78KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.86KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 65B </span>","children":null,"spread":false},{"title":"test3.mp4 <span style='color:#111;'> 14.96MB </span>","children":null,"spread":false},{"title":"test3.mp4 <span style='color:#111;'> 4.75MB </span>","children":null,"spread":false},{"title":"test3.mp4 <span style='color:#111;'> 44B </span>","children":null,"spread":false},{"title":"pack-a54be353174391969d7597a49d5880a6351e7733.pack <span style='color:#111;'> 77.99MB </span>","children":null,"spread":false},{"title":"packed-refs <span style='color:#111;'> 112B </span>","children":null,"spread":false},{"title":"PKG-INFO <span style='color:#111;'> 4.99KB </span>","children":null,"spread":false},{"title":"figure3.png <span style='color:#111;'> 2.81MB </span>","children":null,"spread":false},{"title":"figure1.png <span style='color:#111;'> 2.68MB </span>","children":null,"spread":false},{"title":"figure2.png <span style='color:#111;'> 2.51MB </span>","children":null,"spread":false},{"title":"yolov8l.pt <span style='color:#111;'> 83.70MB </span>","children":null,"spread":false},{"title":"v5loader.py <span style='color:#111;'> 55.23KB </span>","children":null,"spread":false},{"title":"exporter.py <span style='color:#111;'> 40.14KB </span>","children":null,"spread":false},{"title":"augment.py <span style='color:#111;'> 30.75KB </span>","children":null,"spread":false},{"title":"modules.py <span style='color:#111;'> 30.07KB </span>","children":null,"spread":false},{"title":"ops.py <span style='color:#111;'> 25.02KB </span>","children":null,"spread":false},{"title":"trainer.py <span style='color:#111;'> 24.93KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 22.74KB </span>","children":null,"spread":false},{"title":"autobackend.py <span style='color:#111;'> 19.92KB </span>","children":null,"spread":false},{"title":"tasks.py <span style='color:#111;'> 18.24KB </span>","children":null,"spread":false},{"title":"v5augmentations.py <span style='color:#111;'> 17.24KB </span>","children":null,"spread":false},{"title":"torch_utils.py <span style='color:#111;'> 15.78KB </span>","children":null,"spread":false},{"title":"plotting.py <span style='color:#111;'> 14.50KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 13.89KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 13.40KB </span>","children":null,"spread":false},{"title":"predict.py <span style='color:#111;'> 11.93KB </span>","children":null,"spread":false},{"title":"val.py <span style='color:#111;'> 11.74KB </span>","children":null,"spread":false},{"title":"predictor.py <span style='color:#111;'> 11.49KB </span>","children":null,"spread":false},{"title":"json_logger.py <span style='color:#111;'> 11.49KB </span>","children":null,"spread":false},{"title":"instance.py <span style='color:#111;'> 11.42KB </span>","children":null,"spread":false},{"title":"stream_loaders.py <span style='color:#111;'> 11.27KB </span>","children":null,"spread":false},{"title":"checks.py <span style='color:#111;'> 10.13KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 9.66KB </span>","children":null,"spread":false},{"title":"tal.py <span style='color:#111;'> 9.56KB </span>","children":null,"spread":false},{"title":"dataset.py <span style='color:#111;'> 9.54KB </span>","children":null,"spread":false},{"title":"validator.py <span style='color:#111;'> 9.01KB </span>","children":null,"spread":false},{"title":"base.py <span style='color:#111;'> 8.56KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 8.35KB </span>","children":null,"spread":false},{"title":"linear_assignment.py <span style='color:#111;'> 7.90KB </span>","children":null,"spread":false},{"title":"linear_assignment.py <span style='color:#111;'> 7.90KB </span>","children":null,"spread":false},{"title":"kalman_filter.py <span style='color:#111;'> 7.83KB </span>","children":null,"spread":false},{"title":"kalman_filter.py <span style='color:#111;'> 7.83KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 6.65KB </span>","children":null,"spread":false},{"title":"downloads.py <span style='color:#111;'> 6.47KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 6.17KB </span>","children":null,"spread":false},{"title":"nn_matching.py <span style='color:#111;'> 5.51KB </span>","children":null,"spread":false},{"title":"nn_matching.py <span style='color:#111;'> 5.51KB </span>","children":null,"spread":false},{"title":"tracker.py <span style='color:#111;'> 5.31KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 5.22KB </span>","children":null,"spread":false},{"title":"build.py <span style='color:#111;'> 4.97KB </span>","children":null,"spread":false},{"title":"track.py <span style='color:#111;'> 4.94KB </span>","children":null,"spread":false},{"title":"session.py <span style='color:#111;'> 4.60KB </span>","children":null,"spread":false},{"title":"io.py <span style='color:#111;'> 4.25KB </span>","children":null,"spread":false},{"title":"files.py <span style='color:#111;'> 3.83KB </span>","children":null,"spread":false},{"title":"deep_sort.py <span style='color:#111;'> 3.77KB </span>","children":null,"spread":false},{"title":"hydra_patch.py <span style='color:#111;'> 3.74KB </span>","children":null,"spread":false},{"title":"evaluation.py <span style='color:#111;'> 3.45KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 3.34KB </span>","children":null,"spread":false},{"title":"original_model.py <span style='color:#111;'> 3.26KB </span>","children":null,"spread":false},{"title":"base.py <span style='color:#111;'> 3.25KB </span>","children":null,"spread":false},{"title":"autobatch.py <span style='color:#111;'> 3.01KB </span>","children":null,"spread":false},{"title":"iou_matching.py <span style='color:#111;'> 2.86KB </span>","children":null,"spread":false},{"title":"iou_matching.py <span style='color:#111;'> 2.86KB </span>","children":null,"spread":false},{"title":"hub.py <span style='color:#111;'> 2.61KB </span>","children":null,"spread":false},{"title":"auth.py <span style='color:#111;'> 2.49KB </span>","children":null,"spread":false},{"title":"test.py <span style='color:#111;'> 2.48KB </span>","children":null,"spread":false},{"title":"setup.py <span style='color:#111;'> 2.41KB </span>","children":null,"spread":false},{"title":"dist.py <span style='color:#111;'> 2.29KB </span>","children":null,"spread":false},{"title":"loss.py <span style='color:#111;'> 2.14KB </span>","children":null,"spread":false},{"title":"preprocessing.py <span style='color:#111;'> 1.94KB </span>","children":null,"spread":false},{"title":"preprocessing.py <span style='color:#111;'> 1.94KB </span>","children":null,"spread":false},{"title":"clearml.py <span style='color:#111;'> 1.88KB </span>","children":null,"spread":false},{"title":"cli.py <span style='color:#111;'> 1.75KB </span>","children":null,"spread":false},{"title":"feature_extractor.py <span style='color:#111;'> 1.73KB </span>","children":null,"spread":false},{"title":"comet.py <span style='color:#111;'> 1.60KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明