[{"title":"( 34 个子文件 13.01MB ) 此文件包括了电磁场有限元方法的资料,以及用有限元方法求解二维三维电磁场边值问题的C语言源程序","children":[{"title":"1","children":null,"spread":false},{"title":"电磁场与有限元","children":[{"title":"有限元C程序设计.pdf <span style='color:#111;'> 4.79MB </span>","children":null,"spread":false},{"title":"EMAP5","children":[{"title":"www.pudn.com.txt <span style='color:#111;'> 218B </span>","children":null,"spread":false},{"title":"emap5.1.1","children":[{"title":"code","children":[{"title":"far.c <span style='color:#111;'> 17.71KB </span>","children":null,"spread":false},{"title":"sift5.c <span style='color:#111;'> 126.52KB </span>","children":null,"spread":false},{"title":"alloc.c <span style='color:#111;'> 12.20KB </span>","children":null,"spread":false},{"title":"util.c <span style='color:#111;'> 6.65KB </span>","children":null,"spread":false},{"title":"emap5.c <span style='color:#111;'> 141.95KB </span>","children":null,"spread":false},{"title":"complex.c <span style='color:#111;'> 9.84KB </span>","children":null,"spread":false}],"spread":true},{"title":"examples","children":[{"title":"example2","children":[{"title":"E20.sif <span style='color:#111;'> 383B </span>","children":null,"spread":false},{"title":"E20.in <span style='color:#111;'> 120.16KB </span>","children":null,"spread":false}],"spread":true},{"title":"example5","children":[{"title":"E51.sif <span style='color:#111;'> 908B </span>","children":null,"spread":false},{"title":"E51.in <span style='color:#111;'> 155.51KB </span>","children":null,"spread":false},{"title":"E52.sif <span style='color:#111;'> 920B </span>","children":null,"spread":false},{"title":"E50.sif <span style='color:#111;'> 892B </span>","children":null,"spread":false},{"title":"E50.in <span style='color:#111;'> 155.52KB </span>","children":null,"spread":false},{"title":"E52.in <span style='color:#111;'> 155.50KB </span>","children":null,"spread":false}],"spread":true},{"title":"example3","children":[{"title":"E30.sif <span style='color:#111;'> 722B </span>","children":null,"spread":false},{"title":"E30.in <span style='color:#111;'> 342.82KB </span>","children":null,"spread":false}],"spread":true},{"title":"example1","children":[{"title":"E10.in <span style='color:#111;'> 9.35KB </span>","children":null,"spread":false},{"title":"E10.sif <span style='color:#111;'> 282B </span>","children":null,"spread":false}],"spread":true},{"title":"example4","children":[{"title":"E40.in <span style='color:#111;'> 44.64KB </span>","children":null,"spread":false},{"title":"E41.in <span style='color:#111;'> 45.89KB </span>","children":null,"spread":false},{"title":"E41.sif <span style='color:#111;'> 384B </span>","children":null,"spread":false},{"title":"E40.sif <span style='color:#111;'> 368B </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}],"spread":true},{"title":"有限元分析中的数值方法(完整版).pdf <span style='color:#111;'> 7.96MB </span>","children":null,"spread":false},{"title":"电磁学近年成果.pdf <span style='color:#111;'> 283.74KB </span>","children":null,"spread":false},{"title":"EMAP4","children":[{"title":"alloc.h <span style='color:#111;'> 2.70KB </span>","children":null,"spread":false},{"title":"cavity.in <span style='color:#111;'> 388B </span>","children":null,"spread":false},{"title":"tline.in <span style='color:#111;'> 658B </span>","children":null,"spread":false},{"title":"emap4.c <span style='color:#111;'> 185.72KB </span>","children":null,"spread":false},{"title":"PML.in <span style='color:#111;'> 754B </span>","children":null,"spread":false},{"title":"complex.h <span style='color:#111;'> 1.70KB </span>","children":null,"spread":false},{"title":"w_guide.in <span style='color:#111;'> 795B </span>","children":null,"spread":false}],"spread":true},{"title":"求解电磁场有限元边界元方程组的有效方法.pdf <span style='color:#111;'> 299.26KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]