基于卷积神经网络(CNN)的轴承剩余寿命预测实例(数据处理+训练+预测完整代码)

上传者: Endless_will | 上传时间: 2025-05-20 19:46:54 | 文件大小: 15.52MB | 文件类型: ZIP
模型的应用数据集为PHM2012轴承数据集,使用原始振动信号作为模型的输入,输出为0~1的轴承剩余使用寿命。每一个预测模型包括:数据预处理、预测模型、训练函数、主程序以及结果输出等五个.py文件。只需更改数据读取路径即可运行。【PS: 也可以改为XJTU-SY轴承退化数据集】 具体使用流程 1.将所有的程序放在同一个文件夹下,修改训练轴承,运行main.py文件,即可完成模型的训练。 2.训练完成后,运行result_out.py文件,即可输出预测模型对测试轴承的预测结果。

文件下载

资源详情

[{"title":"( 19 个子文件 15.52MB ) 基于卷积神经网络(CNN)的轴承剩余寿命预测实例(数据处理+训练+预测完整代码)","children":[{"title":"CNN","children":[{"title":"main.py <span style='color:#111;'> 4.20KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 1.30KB </span>","children":null,"spread":false},{"title":"results_out.py <span style='color:#111;'> 3.05KB </span>","children":null,"spread":false},{"title":"使用教程.docx <span style='color:#111;'> 16.05KB </span>","children":null,"spread":false},{"title":"dataprocess.py <span style='color:#111;'> 4.63KB </span>","children":null,"spread":false},{"title":"requirement.txt <span style='color:#111;'> 85B </span>","children":null,"spread":false},{"title":"saved","children":[{"title":"weights","children":[{"title":"epoch=27.pth <span style='color:#111;'> 21.45MB </span>","children":null,"spread":false}],"spread":true},{"title":"figure","children":[{"title":"img.png <span style='color:#111;'> 18.76KB </span>","children":null,"spread":false},{"title":"img_1.png <span style='color:#111;'> 18.27KB </span>","children":null,"spread":false}],"spread":true},{"title":"results","children":[{"title":"轴承Bearing1_2.csv <span style='color:#111;'> 33.40KB </span>","children":null,"spread":false},{"title":"轴承Bearing1_2.png <span style='color:#111;'> 57.54KB </span>","children":null,"spread":false},{"title":"轴承Bearing1_1.csv <span style='color:#111;'> 108.25KB </span>","children":null,"spread":false},{"title":"轴承Bearing1_1.png <span style='color:#111;'> 57.99KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"(2-3)RMSE=0.1156.csv <span style='color:#111;'> 108.25KB </span>","children":null,"spread":false},{"title":"数据","children":[{"title":"数据下载地址.txt <span style='color:#111;'> 244B </span>","children":null,"spread":false}],"spread":true},{"title":"__pycache__","children":[{"title":"model.cpython-310.pyc <span style='color:#111;'> 1.52KB </span>","children":null,"spread":false},{"title":"help.cpython-310.pyc <span style='color:#111;'> 5.55KB </span>","children":null,"spread":false},{"title":"dataprocess.cpython-310.pyc <span style='color:#111;'> 3.34KB </span>","children":null,"spread":false}],"spread":true},{"title":"help.py <span style='color:#111;'> 5.75KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明