电力系统动态分析中物理信息神经网络(PINN)的Python实现及应用

上传者: CefPoOMVhG | 上传时间: 2025-09-17 15:31:49 | 文件大小: 206KB | 文件类型: ZIP
内容概要:本文详细介绍了如何利用物理信息神经网络(PINN)进行电力系统动态分析,特别是在单机无穷大系统中的应用。通过将电力系统的微分方程直接嵌入神经网络,实现了高效的瞬态稳定性计算。文中展示了具体的Python代码实现,包括神经网络架构设计、物理约束嵌入、损失函数构建以及训练策略。实验结果显示,相比传统数值解法,PINN能够显著提高计算效率,减少计算时间达87倍以上。此外,PINN还能够在不同工况下快速适应系统参数的变化,提供精确的动态状态估计。 适合人群:从事电力系统研究和开发的技术人员,尤其是对机器学习和深度学习感兴趣的电网工程师。 使用场景及目标:适用于需要高效进行电力系统瞬态稳定性和动态状态估计的场合。主要目标是替代传统数值解法,大幅缩短计算时间,提高仿真效率,同时保持较高的精度。 其他说明:尽管PINN在大多数情况下表现出色,但在极端非线性系统中仍可能存在局限性。因此,在实际应用中应结合具体情况选择合适的方法。

文件下载

资源详情

[{"title":"( 3 个子文件 206KB ) 电力系统动态分析中物理信息神经网络(PINN)的Python实现及应用","children":[{"title":"电力系统物理信息神经网络Python源代码:基于物理定律的高效机器学习框架实现动态状态预测与参数优化.docx <span style='color:#111;'> 37.57KB </span>","children":null,"spread":false},{"title":"637750771049.pdf <span style='color:#111;'> 112.21KB </span>","children":null,"spread":false},{"title":"电力系统物理信息神经网络Python源代码:高效复现与性能提升揭秘.html <span style='color:#111;'> 101.67KB </span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明