yolov3-tiny训练的模型,可以进行训练目标检测并且部署到树莓派上,pytorch框架进行搭建建

上传者: Alihao_ | 上传时间: 2024-05-29 19:19:37 | 文件大小: 1014KB | 文件类型: ZIP
yolov3-tiny训练模型,用pytorch框架搭建,让高配置的电脑,笔记本也能训练v3tiny模型,并且部署到树莓派等视觉实践项目中进行视频实时目标检测,优点在于检测速度快,模型体积小,方便部署和搭建,对于很多新手小白来说十分友好,该模型搭配我博客所讲的方法可以让你们快速入门进行目标检测项目,YOLOv3是一种基于深度神经网络的对象识别和定位算法,其最大的特点是运行速度很快,可以用于实时系统。而YOLOv3-tiny是YOLOv3的简化版。YOLOv3-tiny是YOLO系列中的一个目标检测模型。它是基于深度学习算法的目标检测模型,具有较快的检测速度和较低的计算资源要求。YOLOv3-tiny相对于YOLOv4-tiny在性能上有所下降,但仍然可以实现一定的目标检测准确率。yolov3-tiny 相对于其他版本的 yolo 网络有以下优势yolov3-tiny 具有更快的推理速度,适用于对实时性要求较高的应用场景。 yolov3-tiny 在保持较高检测精度的同时,具有更小的模型体积,占用更少的存储空间。 yolov3-tiny 适合于在计算资源有限的设备上进行目标检测任务。

文件下载

资源详情

[{"title":"( 142 个子文件 1014KB ) yolov3-tiny训练的模型,可以进行训练目标检测并且部署到树莓派上,pytorch框架进行搭建建","children":[{"title":"CITATION.cff <span style='color:#111;'> 393B </span>","children":null,"spread":false},{"title":"setup.cfg <span style='color:#111;'> 1.68KB </span>","children":null,"spread":false},{"title":"Dockerfile <span style='color:#111;'> 2.61KB </span>","children":null,"spread":false},{"title":"Dockerfile <span style='color:#111;'> 821B </span>","children":null,"spread":false},{"title":"Dockerfile-arm64 <span style='color:#111;'> 1.64KB </span>","children":null,"spread":false},{"title":"Dockerfile-cpu <span style='color:#111;'> 1.90KB </span>","children":null,"spread":false},{"title":".dockerignore <span style='color:#111;'> 3.61KB </span>","children":null,"spread":false},{"title":".gitattributes <span style='color:#111;'> 75B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 3.90KB </span>","children":null,"spread":false},{"title":"tutorial.ipynb <span style='color:#111;'> 101.19KB </span>","children":null,"spread":false},{"title":"tutorial.ipynb <span style='color:#111;'> 42.38KB </span>","children":null,"spread":false},{"title":"tutorial.ipynb <span style='color:#111;'> 39.96KB </span>","children":null,"spread":false},{"title":"bus.jpg <span style='color:#111;'> 476.01KB </span>","children":null,"spread":false},{"title":"zidane.jpg <span style='color:#111;'> 164.99KB </span>","children":null,"spread":false},{"title":"optimizer_config.json <span style='color:#111;'> 2.95KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 33.71KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 40.75KB </span>","children":null,"spread":false},{"title":"README.zh-CN.md <span style='color:#111;'> 39.81KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 10.61KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 10.56KB </span>","children":null,"spread":false},{"title":"CONTRIBUTING.md <span style='color:#111;'> 4.89KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.67KB </span>","children":null,"spread":false},{"title":"PULL_REQUEST_TEMPLATE.md <span style='color:#111;'> 774B </span>","children":null,"spread":false},{"title":"dataloaders.py <span style='color:#111;'> 54.50KB </span>","children":null,"spread":false},{"title":"general.py <span style='color:#111;'> 44.37KB </span>","children":null,"spread":false},{"title":"common.py <span style='color:#111;'> 40.78KB </span>","children":null,"spread":false},{"title":"export.py <span style='color:#111;'> 40.31KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 33.93KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 33.09KB </span>","children":null,"spread":false},{"title":"tf.py <span style='color:#111;'> 26.39KB </span>","children":null,"spread":false},{"title":"val.py <span style='color:#111;'> 23.43KB </span>","children":null,"spread":false},{"title":"val.py <span style='color:#111;'> 20.11KB </span>","children":null,"spread":false},{"title":"torch_utils.py <span style='color:#111;'> 19.18KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 18.49KB </span>","children":null,"spread":false},{"title":"plots.py <span style='color:#111;'> 18.28KB </span>","children":null,"spread":false},{"title":"yolo.py <span style='color:#111;'> 17.37KB </span>","children":null,"spread":false},{"title":"augmentations.py <span style='color:#111;'> 16.63KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 16.10KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 16.01KB </span>","children":null,"spread":false},{"title":"predict.py <span style='color:#111;'> 15.42KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 14.23KB </span>","children":null,"spread":false},{"title":"detect.py <span style='color:#111;'> 14.10KB </span>","children":null,"spread":false},{"title":"dataloaders.py <span style='color:#111;'> 13.51KB </span>","children":null,"spread":false},{"title":"predict.py <span style='color:#111;'> 11.50KB </span>","children":null,"spread":false},{"title":"loss.py <span style='color:#111;'> 9.69KB </span>","children":null,"spread":false},{"title":"loss.py <span style='color:#111;'> 8.39KB </span>","children":null,"spread":false},{"title":"wandb_utils.py <span style='color:#111;'> 8.06KB </span>","children":null,"spread":false},{"title":"val.py <span style='color:#111;'> 7.89KB </span>","children":null,"spread":false},{"title":"clearml_utils.py <span style='color:#111;'> 7.86KB </span>","children":null,"spread":false},{"title":"benchmarks.py <span style='color:#111;'> 7.83KB </span>","children":null,"spread":false},{"title":"hubconf.py <span style='color:#111;'> 7.59KB </span>","children":null,"spread":false},{"title":"autoanchor.py <span style='color:#111;'> 7.25KB </span>","children":null,"spread":false},{"title":"hpo.py <span style='color:#111;'> 6.50KB </span>","children":null,"spread":false},{"title":"plots.py <span style='color:#111;'> 6.24KB </span>","children":null,"spread":false},{"title":"general.py <span style='color:#111;'> 5.68KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 5.33KB </span>","children":null,"spread":false},{"title":"hpo.py <span style='color:#111;'> 5.15KB </span>","children":null,"spread":false},{"title":"downloads.py <span style='color:#111;'> 4.83KB </span>","children":null,"spread":false},{"title":"comet_utils.py <span style='color:#111;'> 4.64KB </span>","children":null,"spread":false},{"title":"experimental.py <span style='color:#111;'> 4.22KB </span>","children":null,"spread":false},{"title":"augmentations.py <span style='color:#111;'> 3.67KB </span>","children":null,"spread":false},{"title":"triton.py <span style='color:#111;'> 3.55KB </span>","children":null,"spread":false},{"title":"activations.py <span style='color:#111;'> 3.37KB </span>","children":null,"spread":false},{"title":"autobatch.py <span style='color:#111;'> 2.92KB </span>","children":null,"spread":false},{"title":"callbacks.py <span style='color:#111;'> 2.60KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 2.49KB </span>","children":null,"spread":false},{"title":"restapi.py <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false},{"title":"resume.py <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"example_request.py <span style='color:#111;'> 369B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"get_imagenet.sh <span style='color:#111;'> 1.63KB </span>","children":null,"spread":false},{"title":"get_coco.sh <span style='color:#111;'> 1.53KB </span>","children":null,"spread":false},{"title":"userdata.sh <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"mime.sh <span style='color:#111;'> 780B </span>","children":null,"spread":false},{"title":"download_weights.sh <span style='color:#111;'> 641B </span>","children":null,"spread":false},{"title":"get_coco128.sh <span style='color:#111;'> 619B </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 1.53KB </span>","children":null,"spread":false},{"title":"additional_requirements.txt <span style='color:#111;'> 187B </span>","children":null,"spread":false},{"title":"ImageNet.yaml <span style='color:#111;'> 18.43KB </span>","children":null,"spread":false},{"title":"objects365.yaml <span style='color:#111;'> 8.99KB </span>","children":null,"spread":false},{"title":"xView.yaml <span style='color:#111;'> 5.05KB </span>","children":null,"spread":false},{"title":"voc.yaml <span style='color:#111;'> 3.41KB </span>","children":null,"spread":false},{"title":"anchors.yaml <span style='color:#111;'> 3.26KB </span>","children":null,"spread":false},{"title":"VisDrone.yaml <span style='color:#111;'> 2.90KB </span>","children":null,"spread":false},{"title":"Argoverse.yaml <span style='color:#111;'> 2.67KB </span>","children":null,"spread":false},{"title":"coco.yaml <span style='color:#111;'> 2.44KB </span>","children":null,"spread":false},{"title":"SKU-110K.yaml <span style='color:#111;'> 2.29KB </span>","children":null,"spread":false},{"title":"yolov5-p7.yaml <span style='color:#111;'> 2.07KB </span>","children":null,"spread":false},{"title":"GlobalWheat2020.yaml <span style='color:#111;'> 1.84KB </span>","children":null,"spread":false},{"title":"coco128-seg.yaml <span style='color:#111;'> 1.83KB </span>","children":null,"spread":false},{"title":"coco128.yaml <span style='color:#111;'> 1.81KB </span>","children":null,"spread":false},{"title":"yolov5x6.yaml <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"yolov5m6.yaml <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"yolov5n6.yaml <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"yolov5s6.yaml <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"yolov5l6.yaml <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明