数据挖掘基于K-means聚类的用户行为分析:电商领域精准营销策略设计

上传者: 2501_92808811 | 上传时间: 2025-10-17 22:49:44 | 文件大小: 19KB | 文件类型: DOCX
内容概要:本文围绕K-means聚类分析在用户行为细分与精准营销中的应用展开,系统介绍了K-means算法的核心概念与关键技术,包括K值选择的手肘法和轮廓系数法、数据预处理中的标准化方法等。通过Python代码实例,演示了从数据模拟、标准化、聚类建模到结果分析与可视化的完整流程,并基于聚类结果为不同用户群体制定差异化的营销策略,如针对低、中、高价值用户分别采取唤醒、推荐和专属服务等措施。文章还展望了K-means与深度学习融合、实时化分析及自动化K值选择等未来发展方向。; 适合人群:具备基本数据分析与机器学习知识,熟悉Python编程的数据分析师、市场营销人员及企业运营从业者;适合从事用户画像、精准营销等相关工作的1-3年经验技术人员; 使用场景及目标:①应用于电商、零售、互联网等行业中的用户分群与精细化运营;②帮助企业识别用户行为模式,提升营销转化率与客户忠诚度;③作为学习K-means算法实战应用的教学案例; 阅读建议:建议读者结合代码动手实践,重点关注数据预处理与K值选择对聚类结果的影响,同时根据实际业务背景调整营销策略设计,增强模型的实用性与可解释性。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明