上传者: 2403_88102872
|
上传时间: 2025-11-27 19:07:57
|
文件大小: 2.41MB
|
文件类型: DOCX
加油站加油行为规范检测数据集是一项用于训练和评估计算机视觉模型的资源,其目的在于识别和规范在加油站中的安全行为。本数据集包含1136张标注图片,其中涵盖了加油站内的各种加油行为。数据集以两种主流格式提供:Pascal VOC格式和YOLO格式。Pascal VOC格式包含jpg格式的图片文件和对应的xml文件,用于训练目标检测模型,其中xml文件描述了图片中物体的位置与类别。YOLO格式则包括jpg图片和txt文件,这些txt文件含有物体位置和类别的信息,便于YOLO算法进行快速识别。
数据集的标注类别分为两类:“dissallow”(禁止行为)和“normal”(规范行为)。每个类别下都标注了一定数量的矩形框,分别指示图片中出现的不同行为。根据提供的信息,“dissallow”类别的框数为479,而“normal”类别的框数为687,总框数达到1166个,这为机器学习提供了丰富的信息以进行学习和判断。数据集内的图片不仅包括原始拍摄的图片,也包含了通过图像增强技术处理过的图片,以提高模型的泛化能力。
此数据集由专门的标注工具labelImg生成,每个矩形框内都标有相应的类别信息。需要注意的是,数据集所包含的标注信息是准确且合理的,但数据集本身并不保证使用它训练出的模型或权重文件的精度。这意味着,尽管数据集提供了可靠的数据和标准,但最终模型的性能还需要通过实际应用和验证来确定。
在数据集的使用中,用户应注意到YOLO格式中的类别顺序并非按照“dissallow”和“normal”的顺序进行排列,而是以“classes.txt”文件中的顺序为准。因此,在应用YOLO格式的数据集时,用户需要参考此文本文件,以确保对类别识别的准确性。
数据集提供了一个图片预览功能,用户可以随机抽取16张标注图进行查看,以直观地了解数据集的质量和内容。这有助于用户评估数据集是否符合其研究或开发的需求,进而决定是否采用该数据集进行进一步的工作。