nudt人工智能原理与实践复习资料_Principles-and-Practice-of-Artificia

上传者: 2401_87496566 | 上传时间: 2025-10-27 10:04:00 | 文件大小: 13.18MB | 文件类型: ZIP
人工智能原理与实践是目前科技领域的前沿学科,它涉及到多种技术的融合,包括机器学习、神经网络、深度学习、自然语言处理、计算机视觉、数据挖掘等。在这些技术的支撑下,人工智能已经渗透到我们生活的方方面面,从智能家居到自动驾驶,从医疗诊断到金融分析,人工智能正在改变着世界。 人工智能的发展可以追溯到20世纪50年代,当时的科学家们提出了一种想法,即通过机器来模拟人类的认知功能。这一想法引领了人工智能学科的诞生,并且在随后的几十年中,随着计算机科学和认知科学的发展,人工智能领域不断涌现出新的理论和技术。到了21世纪初,大数据和计算能力的飞速发展,使得深度学习技术得以实现,这成为了推动人工智能技术突飞猛进的关键因素。 在机器学习领域,算法的设计和优化是核心内容。机器学习模型需要通过大量的数据进行训练,从而识别出数据中的模式和关联。这些模型可以是简单的线性回归模型,也可以是复杂的神经网络模型。深度学习是机器学习的一个子领域,它利用深层的神经网络结构来模拟人脑处理信息的方式,这种结构通常被称为深度神经网络。通过深度学习,计算机可以在图像识别、语音识别等任务上达到甚至超过人类的水平。 自然语言处理是人工智能的另一个重要分支,它涉及到计算机理解和处理人类语言的能力。自然语言处理技术使得机器能够理解、解释和生成人类语言,这使得机器能够与人类进行更加自然的交流。随着深度学习技术的发展,自然语言处理的效果得到了显著提升,现在我们看到的语音助手、机器翻译等应用都离不开自然语言处理技术的支持。 计算机视觉则是研究如何让机器“看”的科学,它致力于使计算机能够从图片或视频中提取信息并理解视觉世界。计算机视觉在自动驾驶汽车、监控系统、医疗图像分析等领域有着广泛的应用。计算机视觉的关键技术包括图像识别、目标跟踪、场景理解等。 数据挖掘是利用算法从大量的数据中提取有价值信息的过程。在人工智能领域,数据挖掘技术可以帮助我们发现数据中的模式、关联和趋势,这在商业智能、网络安全、医疗诊断等应用中具有重要意义。 人工智能原理与实践复习资料通常包含这些核心概念的介绍和分析,旨在帮助学习者构建坚实的理论基础,并能够将理论应用到实践中去。学习者在掌握基础理论的同时,还需要通过实验和项目来加深理解。例如,学习者可能会通过构建一个简单的图像识别系统或开发一个基于规则的聊天机器人来实践所学知识。 在学习人工智能的过程中,了解人工智能的发展历程、掌握核心算法原理、熟悉应用场景,并且通过实践来加深理解是非常重要的。人工智能的未来发展前景广阔,它将不断推动科技的进步,并在解决实际问题中展现出巨大的潜力。

文件下载

资源详情

[{"title":"( 108 个子文件 13.18MB ) nudt人工智能原理与实践复习资料_Principles-and-Practice-of-Artificia","children":[{"title":"elegantnote.cls <span style='color:#111;'> 14.50KB </span>","children":null,"spread":false},{"title":"Q学习.jpg <span style='color:#111;'> 68.37KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 97B </span>","children":null,"spread":false},{"title":"elegantnote.pdf <span style='color:#111;'> 7.09MB </span>","children":null,"spread":false},{"title":"单层感知器的三要素.pdf <span style='color:#111;'> 226.79KB </span>","children":null,"spread":false},{"title":"线性判别分析.pdf <span style='color:#111;'> 223.79KB </span>","children":null,"spread":false},{"title":"minmax性质.pdf <span style='color:#111;'> 213.67KB </span>","children":null,"spread":false},{"title":"Q学习思想.pdf <span style='color:#111;'> 209.31KB </span>","children":null,"spread":false},{"title":"神经元单元特性.pdf <span style='color:#111;'> 187.58KB </span>","children":null,"spread":false},{"title":"支持向量机.pdf <span style='color:#111;'> 179.16KB </span>","children":null,"spread":false},{"title":"MP神经元模型.pdf <span style='color:#111;'> 178.36KB </span>","children":null,"spread":false},{"title":"自底向上.pdf <span style='color:#111;'> 169.90KB </span>","children":null,"spread":false},{"title":"混淆矩阵.pdf <span style='color:#111;'> 167.32KB </span>","children":null,"spread":false},{"title":"机器学习的分类.pdf <span style='color:#111;'> 165.64KB </span>","children":null,"spread":false},{"title":"非线性激励层.pdf <span style='color:#111;'> 164.27KB </span>","children":null,"spread":false},{"title":"两种通用的学习类型.pdf <span style='color:#111;'> 161.90KB </span>","children":null,"spread":false},{"title":"归纳偏好.pdf <span style='color:#111;'> 154.42KB </span>","children":null,"spread":false},{"title":"BP神经网络的三要素.pdf <span style='color:#111;'> 146.45KB </span>","children":null,"spread":false},{"title":"delta信号的BP过程.pdf <span style='color:#111;'> 145.92KB </span>","children":null,"spread":false},{"title":"K近邻.pdf <span style='color:#111;'> 144.35KB </span>","children":null,"spread":false},{"title":"决策树.pdf <span style='color:#111;'> 138.38KB </span>","children":null,"spread":false},{"title":"基于知识的Agent.pdf <span style='color:#111;'> 138.06KB </span>","children":null,"spread":false},{"title":"贝尔曼方程.pdf <span style='color:#111;'> 131.43KB </span>","children":null,"spread":false},{"title":"图搜索和树搜索.pdf <span style='color:#111;'> 129.96KB </span>","children":null,"spread":false},{"title":"时序差分值学习思想.pdf <span style='color:#111;'> 125.29KB </span>","children":null,"spread":false},{"title":"BP-神经元作用函数.pdf <span style='color:#111;'> 123.37KB </span>","children":null,"spread":false},{"title":"基于析取式的链式推理.pdf <span style='color:#111;'> 119.36KB </span>","children":null,"spread":false},{"title":"3大学派.pdf <span style='color:#111;'> 118.32KB </span>","children":null,"spread":false},{"title":"时序差分学习.pdf <span style='color:#111;'> 116.92KB </span>","children":null,"spread":false},{"title":"BP网络结构.pdf <span style='color:#111;'> 116.00KB </span>","children":null,"spread":false},{"title":"CNN结构.pdf <span style='color:#111;'> 115.12KB </span>","children":null,"spread":false},{"title":"强化学习算法.pdf <span style='color:#111;'> 114.46KB </span>","children":null,"spread":false},{"title":"连续非线性作用函数.pdf <span style='color:#111;'> 106.96KB </span>","children":null,"spread":false},{"title":"wake.pdf <span style='color:#111;'> 104.68KB </span>","children":null,"spread":false},{"title":"聚类目标.pdf <span style='color:#111;'> 101.91KB </span>","children":null,"spread":false},{"title":"最一般合一元.pdf <span style='color:#111;'> 101.90KB </span>","children":null,"spread":false},{"title":"BP的数学原理.pdf <span style='color:#111;'> 101.24KB </span>","children":null,"spread":false},{"title":"sleep.pdf <span style='color:#111;'> 95.41KB </span>","children":null,"spread":false},{"title":"基于模型的方法.pdf <span style='color:#111;'> 88.70KB </span>","children":null,"spread":false},{"title":"Q学习.pdf <span style='color:#111;'> 88.53KB </span>","children":null,"spread":false},{"title":"逐层训练方式的特点.pdf <span style='color:#111;'> 87.43KB </span>","children":null,"spread":false},{"title":"梯度消失.pdf <span style='color:#111;'> 82.27KB </span>","children":null,"spread":false},{"title":"Agent类型.pdf <span style='color:#111;'> 79.04KB </span>","children":null,"spread":false},{"title":"非线性回归.pdf <span style='color:#111;'> 77.70KB </span>","children":null,"spread":false},{"title":"alpha-beta-sol.pdf <span style='color:#111;'> 76.45KB </span>","children":null,"spread":false},{"title":"马尔可夫决策过程.pdf <span style='color:#111;'> 75.71KB </span>","children":null,"spread":false},{"title":"Agent.pdf <span style='color:#111;'> 75.26KB </span>","children":null,"spread":false},{"title":"机器学习思路.pdf <span style='color:#111;'> 74.28KB </span>","children":null,"spread":false},{"title":"分段线性作用函数.pdf <span style='color:#111;'> 74.06KB </span>","children":null,"spread":false},{"title":"BP网络相关记号.pdf <span style='color:#111;'> 73.35KB </span>","children":null,"spread":false},{"title":"PEAS.pdf <span style='color:#111;'> 73.09KB </span>","children":null,"spread":false},{"title":"NeuronFreeVectorIllustration.pdf <span style='color:#111;'> 73.01KB </span>","children":null,"spread":false},{"title":"评价函数例题-1.pdf <span style='color:#111;'> 69.26KB </span>","children":null,"spread":false},{"title":"混淆矩阵例题.pdf <span style='color:#111;'> 67.61KB </span>","children":null,"spread":false},{"title":"K均值.pdf <span style='color:#111;'> 66.94KB </span>","children":null,"spread":false},{"title":"NFL.pdf <span style='color:#111;'> 65.14KB </span>","children":null,"spread":false},{"title":"提前停止.pdf <span style='color:#111;'> 64.30KB </span>","children":null,"spread":false},{"title":"贝叶斯网络全局语法语义.pdf <span style='color:#111;'> 63.61KB </span>","children":null,"spread":false},{"title":"余弦和相关系数关系.pdf <span style='color:#111;'> 62.83KB </span>","children":null,"spread":false},{"title":"K折交叉验证.pdf <span style='color:#111;'> 57.16KB </span>","children":null,"spread":false},{"title":"单层感知器-或-异或.pdf <span style='color:#111;'> 48.50KB </span>","children":null,"spread":false},{"title":"评价函数例题.pdf <span style='color:#111;'> 48.01KB </span>","children":null,"spread":false},{"title":"问题求解例子+Ans.pdf <span style='color:#111;'> 44.33KB </span>","children":null,"spread":false},{"title":"问题求解例子.pdf <span style='color:#111;'> 43.66KB </span>","children":null,"spread":false},{"title":"创建聚类树的策略.pdf <span style='color:#111;'> 43.31KB </span>","children":null,"spread":false},{"title":"定理证明例子.pdf <span style='color:#111;'> 42.77KB </span>","children":null,"spread":false},{"title":"搜索策略例题.pdf <span style='color:#111;'> 41.13KB </span>","children":null,"spread":false},{"title":"阈值型f.pdf <span style='color:#111;'> 41.00KB </span>","children":null,"spread":false},{"title":"alpha-beta.pdf <span style='color:#111;'> 40.93KB </span>","children":null,"spread":false},{"title":"层次聚类举例可视化.pdf <span style='color:#111;'> 38.57KB </span>","children":null,"spread":false},{"title":"CPT.pdf <span style='color:#111;'> 37.71KB </span>","children":null,"spread":false},{"title":"互连型神经网络.pdf <span style='color:#111;'> 37.57KB </span>","children":null,"spread":false},{"title":"符号主义的困境.pdf <span style='color:#111;'> 36.89KB </span>","children":null,"spread":false},{"title":"基于效用的Agent.pdf <span style='color:#111;'> 36.63KB </span>","children":null,"spread":false},{"title":"层内有互连型.pdf <span style='color:#111;'> 36.51KB </span>","children":null,"spread":false},{"title":"层次聚类举例.pdf <span style='color:#111;'> 36.40KB </span>","children":null,"spread":false},{"title":"单纯型.pdf <span style='color:#111;'> 35.93KB </span>","children":null,"spread":false},{"title":"计算MP神经元的输出.pdf <span style='color:#111;'> 35.70KB </span>","children":null,"spread":false},{"title":"卷积层.pdf <span style='color:#111;'> 35.37KB </span>","children":null,"spread":false},{"title":"有反馈型.pdf <span style='color:#111;'> 34.99KB </span>","children":null,"spread":false},{"title":"基于目标的反射Agent.pdf <span style='color:#111;'> 34.25KB </span>","children":null,"spread":false},{"title":"基于模型的反射Agent.pdf <span style='color:#111;'> 34.02KB </span>","children":null,"spread":false},{"title":"logo.pdf <span style='color:#111;'> 33.56KB </span>","children":null,"spread":false},{"title":"学习Agent.pdf <span style='color:#111;'> 32.73KB </span>","children":null,"spread":false},{"title":"归结.pdf <span style='color:#111;'> 32.72KB </span>","children":null,"spread":false},{"title":"简单反射Agent.pdf <span style='color:#111;'> 32.33KB </span>","children":null,"spread":false},{"title":"单层处理单元.pdf <span style='color:#111;'> 30.70KB </span>","children":null,"spread":false},{"title":"谁是间谍.pdf <span style='color:#111;'> 27.76KB </span>","children":null,"spread":false},{"title":"机器人搬箱子.pdf <span style='color:#111;'> 24.27KB </span>","children":null,"spread":false},{"title":"标准-归结.pdf <span style='color:#111;'> 23.80KB </span>","children":null,"spread":false},{"title":"归结-1.pdf <span style='color:#111;'> 23.36KB </span>","children":null,"spread":false},{"title":"BP学习的基本思想.pdf <span style='color:#111;'> 23.29KB </span>","children":null,"spread":false},{"title":"贝叶斯网络.pdf <span style='color:#111;'> 23.21KB </span>","children":null,"spread":false},{"title":"归结-2.pdf <span style='color:#111;'> 23.13KB </span>","children":null,"spread":false},{"title":"归结-3.pdf <span style='color:#111;'> 22.96KB </span>","children":null,"spread":false},{"title":"池化.pdf <span style='color:#111;'> 22.77KB </span>","children":null,"spread":false},{"title":"典型强化学习算法.pdf <span style='color:#111;'> 19.40KB </span>","children":null,"spread":false},{"title":"贝叶斯网络局部语法语义.pdf <span style='color:#111;'> 16.63KB </span>","children":null,"spread":false},{"title":"scatter.pdf <span style='color:#111;'> 15.66KB </span>","children":null,"spread":false},{"title":"不确定性.pdf <span style='color:#111;'> 11.16KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明