# 基于机器学习方法的反电信诈骗研究 ## 项目简介 本项目旨在通过机器学习的方法,对电信诈骗进行研究。基于给定的数据集,我们从用户行为、应用使用、短信和语音通信等多个角度,构建了多个机器学习模型,以预测可能的诈骗行为。项目的主要目标是提高电信诈骗检测的准确率,从而为防止电信诈骗提供有效的技术手段。 ## 项目的主要特性和功能 1. 数据集分析和预处理针对原始数据集进行分析,包括数据清洗、特征工程和编码等。 2. 多模型训练基于不同的数据类型(用户、应用、短信、语音),分别使用不同的机器学习模型进行训练。 3. 模型评估对训练好的模型进行准确率、精确度、召回率和R2分数等评估指标的测试。 4. 综合预测加载所有模型,对每种类型的数据进行预测,并统计所有用户的预测结果和标签,计算整体的评估指标。 ## 安装使用步骤 假设用户已经下载了项目的源码文件
2025-12-28 16:05:29 723KB
1
1、包含nlink_linktrack_nodeframe1及nlink_linktrack_nodeframe4两种协议解析方法 2、nlink_linktrack_nodeframe1协议可获取6基站以内的一键标定的标签Tag空间坐标数据映射--() 3、nlink_linktrack_nodeframe4协议可获取6基站以上的自定义排布基站的标签Tag空间坐标数据映射--() 4、ReadMe文档内包含协议内容及测试输出数据 5、该文件为of框架编写的ofxUwbLinkTrack插件,可以迁移其他C++平台使用
2025-12-28 14:59:21 1.14MB
1
在IT行业中,地下水动态模拟实验平台是环境科学与工程领域中的一个重要工具,它主要用于研究地下水流动、污染物迁移以及地下水位的变化规律。标题所提到的"一种基于地下水动态模拟实验平台的地下水位动态模拟实验方法"涉及到的是利用计算机技术对地下水系统进行建模和模拟的方法,以理解并预测地下水系统的动态行为。 地下水位动态模拟实验方法的核心在于数学建模和数值计算。我们需要了解基础的水文地质学原理,包括地下水的补给、排泄、渗透、扩散等过程。这些过程可以通过一套复杂的偏微分方程(如理查森方程或达西定律)来描述,这些方程通常与流体动力学和热力学原理相结合。 在实验平台的构建上,通常会采用GIS(地理信息系统)来获取和处理地理空间数据,包括地形、地质结构、含水层特性等。这些数据是建立地下水模型的关键输入。接着,借助于专门的地下水模拟软件,如MODFLOW、Feflow或HydroGeoSphere,将这些数据转换为可计算的模型参数,设置边界条件和初始条件,然后进行数值求解。 在实验过程中,可能需要考虑多种因素,如气候变化、人为活动(如灌溉、开采)、污染物注入等对地下水位的影响。通过调整模型参数,可以模拟不同的场景,预测地下水位的未来变化趋势,这对于水资源管理、环境保护和灾害预防具有重要意义。 实验方法的具体实施步骤通常包括以下几个阶段: 1. 数据收集:获取地质、水文、气候等相关数据。 2. 模型构建:根据实际情况选择合适的模型框架,设定模型网格,确定物理参数。 3. 边界条件设定:包括地下水的流入、流出边界,以及人为干预情况。 4. 求解过程:运行地下水模拟软件进行数值计算。 5. 结果分析:对比实测数据与模拟结果,评估模型的适用性和准确性。 6. 反馈调整:根据分析结果调整模型参数,提高模型预测的精度。 在实际应用中,这种实验方法可以广泛应用于地下水污染控制、地下水资源评价、地下水资源可持续利用等领域。通过不断的实验和优化,我们可以更准确地理解和预测地下水系统的动态行为,为地下水管理和保护提供科学依据。
2025-12-28 13:13:09 761KB
1
MATLAB仿真:基于分步傅里叶与龙格库塔方法的锁模激光器耦合非线性薛定谔方程模拟结果解析——脉冲与光谱动态演化的视觉展示,MATLAB模拟锁模激光器:分步傅里叶与龙格库塔法求解耦合非线性薛定谔方程的动态演化研究,MATLAB 锁模激光器模拟 分步傅里叶加龙格库塔求解耦合非线性薛定谔方程 模拟结果可看脉冲和光谱的动态演化 ,MATLAB; 锁模激光器模拟; 分步傅里叶; 龙格库塔; 耦合非线性薛定谔方程; 脉冲动态演化; 光谱动态演化。,MATLAB模拟锁模激光器:傅里叶-龙格库塔求解非线性薛定谔方程的脉冲与光谱动态演化
2025-12-26 20:26:57 849KB
1
电网电压谐波下并网逆变器电流畸变抑制新策略:电网电压全前馈方法探讨,电网电压谐波抑制下的双回路控制策略改进研究:基于全前馈策略的并网逆变器应用分析,电力电子顶刊复现---IEEE TRANSACTIONS ON POWER ELECTRONICS 对于带有LCL滤波器的并网逆变器,采用电容反馈和注入电流的双回路控制策略可以有效地抑制谐振,但不能减小电网电压谐波引起的电流畸变。 传统施加电网电压前反馈的解决方案可以抑制这种电流畸变,但效果并不理想,尤其是在谐波次数较高的情况下。 该文提出了一种电网电压全前馈的方案,以抑制电网电压谐波引起的注入电流失真。 ,IEEE TRANSACTIONS ON POWER ELECTRONICS; LCL滤波器并网逆变器; 谐振抑制; 电流畸变; 电网电压前馈控制; 电压谐波。,电力电子研究新突破:全前馈方案抑制LCL滤波器中电网电压谐波引起的电流畸变
2025-12-24 22:12:11 4.84MB
1
本文在个人的实验环境中,测试解决了下Oracle 11.2.0.4 RAC sysaux表空间异常增长的处理过程。在Oracle 11.2.0.4 RAC下这是一个BUG,BUG号:14084247。
2025-12-24 11:09:47 586KB Oracle Oracle
1
随着螺栓连接在钢结构中大量使用,普通受拉螺栓连接广泛应用于梁柱节点、柱与牛腿等重要连接。弯矩作用下受拉螺栓数目的影响因素较多,不易一次确定,《钢结构设计规范》未给计算方法,设计中常需反复,影响效率。论文将弯矩作用下受拉螺栓连接的受力情况转化成实腹矩形截面,按中和轴位于弯矩指向的最外排螺栓中心线处,并忽略受压区产生的抵抗力矩,根据力矩平衡,推导出所需螺栓数目的近似计算公式。可一次确定螺栓数目,方便设计。
2025-12-24 08:24:37 157KB 螺栓连接
1
**正文** Kafka是Apache软件基金会的一个开源流处理平台,由LinkedIn开发并捐献给Apache。它最初设计的目标是构建一个高吞吐量、分布式的发布/订阅消息系统,现在广泛应用于大数据实时处理、日志聚合、用户行为追踪等多个领域。 在`kafka_2.13-2.5.1`版本中,`2.13`表示使用的Scala版本,而`2.5.1`则是Kafka的版本号。这个版本引入了多项改进和新特性,例如性能优化、稳定性增强以及对新功能的支持。对于生产环境来说,选择稳定版本如2.5.1是很重要的,因为它经过了大量的测试和社区验证。 **Kafka的基本概念** 1. **主题(Topic)**:主题是Kafka中消息的分类,类似于数据库中的表。每个主题可以被分为多个分区,保证数据的有序性。 2. **分区(Partition)**:分区是主题的逻辑分片,每个分区包含一系列有序且不可变的消息。每个分区在集群中的不同节点上都有副本,提供容错能力。 3. **生产者(Producer)**:生产者负责将消息发送到Kafka的主题中,可以选择指定分区或让Kafka自动分配。 4. **消费者(Consumer)**:消费者从Kafka的主题中读取并处理消息,可以订阅一个或多个主题。消费者可以以组的形式工作,实现负载均衡和故障恢复。 5. ** broker **:Kafka集群中的节点称为broker,负责存储和转发消息。 **Kafka的安装步骤** 1. **下载**:首先从Apache官网下载对应版本的Kafka,例如`kafka_2.13-2.5.1.tgz`。 2. **解压**:将下载的压缩包解压到指定目录,例如`tar -zxvf kafka_2.13-2.5.1.tgz -C /usr/local/`。 3. **配置**:修改`config/server.properties`配置文件,设置broker的IP地址、端口、日志存储路径等。 4. **启动Zookeeper**:Kafka依赖于Zookeeper进行集群管理和协调,确保Zookeeper服务正常运行。 5. **启动Kafka**:通过执行`bin/kafka-server-start.sh config/server.properties`启动Kafka服务器。 6. **创建主题**:使用`bin/kafka-topics.sh`脚本创建主题,指定主题名称、分区数量和副本数。 7. **启动生产者**:使用`bin/kafka-console-producer.sh`生成消息到指定主题。 8. **启动消费者**:使用`bin/kafka-console-consumer.sh`从主题中消费消息。 **进一步的Kafka操作** - **数据保留策略**:Kafka可以通过配置`log.retention.hours`等参数来决定保留消息的时间。 - **消费者组**:消费者可以属于同一组,组内的消费者会自动分配主题分区,避免消息重复消费。 - **Kafka Connect**:Kafka Connect允许与外部系统(如数据库、HDFS)集成,实现数据的导入导出。 - **Kafka Streams**:Kafka提供的流处理库,用于构建实时数据处理应用。 - **监控和管理**:使用Kafka的命令行工具或第三方工具(如Kafka Manager)监控和管理Kafka集群的状态。 Kafka因其高性能、可扩展性和灵活性,在大数据领域得到了广泛应用。正确安装和配置Kafka是实现高效数据流处理的基础,通过不断地学习和实践,我们可以充分利用其优势,构建稳定可靠的数据处理系统。
2025-12-23 21:43:25 58.71MB kafka
1
在本文中,我们将详细介绍如何在CentOS系统上离线部署Nginx服务器,并涵盖在安装过程中可能会遇到的问题及其解决方法。同时,我们将提供所需的安装资源包列表,包括但不限于nginx服务器、zlib、openssl、pcre、perl5等依赖包,以及gcc、g++环境依赖的安装包。 我们需要理解为什么要在离线环境下部署Nginx。通常,离线部署发生在没有互联网接入的服务器上,或者出于安全考虑希望减少外部网络连接的场景。在这样的环境下,所有的软件安装包都需要提前下载好,并存放在一个可以访问的位置,比如一个USB驱动器或者本地网络存储。 在开始之前,我们需要准备以下离线安装包: 1. gcc、g++离线安装包,用于编译安装所需的工具。 2. perl-5.30.1.tar.gz,因为Nginx编译过程中可能会用到Perl脚本。 3. openssl-1.1.0h.tar.gz,Nginx需要这个库来处理SSL/TLS加密。 4. pcre-8.45.tar.gz,Perl兼容正则表达式库,Nginx使用PCRE进行HTTP请求重写等操作。 5. zlib-1.2.13.tar.gz,用于提供数据压缩功能。 6. nginx-1.20.2.tar.gz,当前版本的Nginx源代码包。 接下来,我们将按照以下步骤进行安装: 第一步:安装gcc和g++。因为我们需要编译安装openssl、pcre等库,所以首先要确保系统已经安装了gcc和g++编译器。使用命令行解压缩下载的gcc、g++离线安装包,并按照其提供的README或INSTALL文档指示进行编译安装。 第二步:安装依赖库。以相同的步骤,首先解压openssl、pcre、zlib的源代码包,然后进入各自的目录,通常通过以下命令配置并编译安装: ```bash ./configure --prefix=/usr/local make make install ``` 请确保在编译前所有依赖的库都已正确安装,因为Nginx在编译时会检查依赖是否满足。 第三步:安装Nginx。解压Nginx源代码包,进入目录,执行configure脚本以创建Makefile文件。在执行configure时,确保指定好之前安装的依赖库的路径,例如: ```bash ./configure --prefix=/usr/local/nginx --with-openssl=/usr/local/ssl --with-pcre=/usr/local/pcre --with-zlib=/usr/local/zlib make make install ``` 安装完成后,Nginx将被安装到您指定的目录中。 在安装过程中,您可能会遇到各种问题,例如库版本不兼容、缺少某些开发文件或头文件、权限问题等。对于这些常见问题,您可以查看Nginx的官方文档或相关的技术论坛来找到解决方案。比如,如果您遇到了库版本不兼容的问题,可以尝试下载与Nginx版本相兼容的库版本进行安装。如果是因为缺少开发文件或头文件,可以安装相应的开发包,例如在CentOS上执行: ```bash yum install -y zlib-devel openssl-devel pcre-devel ``` 来安装缺少的开发文件。 完成上述步骤后,您可以根据Nginx的官方文档配置nginx.conf文件,并启动Nginx服务器进行测试。至此,您应该已经成功在离线的CentOS系统上部署了Nginx。 CentOS系统离线部署Nginx的关键在于提前准备好所有必需的依赖安装包,并遵循正确的编译安装步骤。在安装过程中遇到的常见问题,往往可以通过查阅官方文档或社区的帮助来解决。如果您的环境与标准有所不同,例如内核版本特别老或者特别新的情况,可能还需要对安装步骤进行相应的调整。
2025-12-22 16:26:43 74.52MB nginx 课程资源
1
钢管混凝土叠合柱是近年来在土木工程领域逐渐受到关注的一种新型结构构件,其设计与应用结合了钢管混凝土与钢筋混凝土的结构优势。钢管混凝土叠合柱通过将钢管混凝土核心与外层钢筋混凝土相结合,有效提高了柱子的承载力、抗震性能以及耐腐蚀等性能,且施工过程相对简便。在进行承载力计算时,特别是在偏心受压的情况下,需要考虑多种材料力学性能的复合效应以及不同区域应力分布的差异性。 在钢管混凝土叠合柱的设计与应用中,偏心受压状态是一种常见的工况。偏心受压是指轴向荷载作用点偏离柱子截面中心线的状态,这种偏心会导致柱截面上存在不均匀的压应力分布。因此,准确计算偏心受压下钢管混凝土叠合柱的承载力对于确保结构的安全与经济性至关重要。 为了计算钢管混凝土叠合柱偏心受压短柱的承载力,研究者郭全全和李芊基于试验研究,采用了截面极限平衡理论进行理论推导。此理论假设在材料达到极限状态时,截面内各部分材料所承受的压力能够达到平衡。其中,管外混凝土的受压合力采用叠加法计算,即通过计算截面矩形压区与管内压区合力的差值来确定。 此外,为了简化问题的计算过程,研究中将管内混凝土应力图以及钢管应力图采用等效矩形应力图来表示,并利用等参元理论进行简化。等参元理论是一种数值分析方法,它通过将结构划分为多个单元,对各单元内部的应力分布进行近似处理。基于此理论,研究者运用高斯积分法来计算受压区高度和应力调整系数,这涉及到积分计算和材料力学性能的理论应用。 钢管部分的计算同样采用了等效矩形应力图,并用高斯积分法来计算钢管合力(矩)的调整系数。最终,研究者根据截面平衡方程提出了一套适用于钢管混凝土叠合柱偏心受压正截面承载力的计算公式。该公式能够保证在不同偏心距下,都能够得到较为准确的承载力计算结果,从而在工程设计中有着较高的实用价值。 上述的计算方法和推导过程体现了结构工程领域对于复杂结构受力分析的精细化和理论化。在实际工程应用中,除了要考虑材料力学性能和截面的几何特性之外,还需要关注诸如位置系数、含管率等参数对结构性能的影响。 本文所涉及的钢管混凝土叠合柱的承载力计算方法,为工程设计提供了理论依据和计算工具,有助于工程师们在进行结构设计时,能够准确评估并设计出既安全又经济的结构体系。此外,该研究还表明,通过结合实验研究和理论分析,能够有效解决实际工程中遇到的结构力学问题。
2025-12-22 15:56:27 444KB 首发论文
1