五相电机双闭环矢量控制模型_采用邻近四矢量SVPWM_MATLAB_Simulink仿真模型包括: (1)原理说明文档(重要):包括扇区判断、矢量作用时间计算、矢量作用顺序及切时间计算、PWM波的生成; (2)输出部分仿真波形及仿真说明文档; (3)完整版仿真模型:包括邻近四矢量SVPWM模型和完整双闭环矢量控制Simulink模型; 资料介绍过程十分详细,零基础手把手教学,资料已经写的很清楚
2024-11-21 18:44:42 682KB matlab
1
TCR+FC型svc无功补偿simulink仿真模型,一共两个仿真,如下图所示,两个其实大致内容差不多,只是封装不同,有详细资料,资料中有相关lunwen,有背景原理和分析,有使用说明,有建模仿真总结书,还有使用录像
2024-10-25 17:47:27 554KB
1
三相全桥整流电路simulink仿真模型
2024-10-22 10:26:38 31KB matlab/simulink
1
永磁同步电机无感FOC滑膜观测器(SMO)simulink仿真模型,滑膜观测器原理分析及永磁同步电机无感FOC滑膜观测器仿真模型搭建说明: 永磁同步电机无感FOC模型参考自适应(MRAS)转速估计算法:https://blog.csdn.net/qq_28149763/article/details/137650453?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22137650453%22%2C%22source%22%3A%22qq_28149763%22%7D
2024-09-12 11:35:50 124KB 电机控制 simulink PMSM
1
永磁同步电机(PMSM)速度环一阶线性自抗扰(LADRC)控制simulink仿真模型。 自抗扰控制(ADRC)原理及仿真搭建说明文档链接: 永磁同步电机ADRC(自抗扰控制) https://blog.csdn.net/qq_28149763/article/details/137648267
2024-09-12 11:33:10 144KB simulink 电机控制 PMSM
1
永磁同步电机速度环滑膜控制simulink仿真模型,文档及说明: 永磁同步电机速度环滑膜控制(SMC):https://blog.csdn.net/qq_28149763/article/details/137125055
2024-09-12 11:31:53 126KB 电机控制 simulink PMSM
1
永磁同步电机电流环(复矢量解耦控制+前馈解耦控制)simulink仿真模型,文档说明: 永磁同步电机电流环复矢量控制:https://blog.csdn.net/qq_28149763/article/details/136720840
2024-09-12 11:26:19 277KB simulink 电机控制 PMSM
1
永磁同步电机最大转矩电流比(MTPA)控制+弱磁控制simulink仿真模型,相关原理分析及说明: 永磁同步电机MTPA与弱磁控制:https://blog.csdn.net/qq_28149763/article/details/136348643?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22136348643%22%2C%22source%22%3A%22qq_28149763%22%7D
2024-09-12 11:20:40 299KB 电机控制 simulink PMSM
1
永磁同步电机最大转矩电流比(MTPA)控制simulink仿真模型,相关原理分析及说明: 永磁同步电机MTPA与弱磁控制:https://blog.csdn.net/qq_28149763/article/details/136348643?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22136348643%22%2C%22source%22%3A%22qq_28149763%22%7D
2024-09-12 11:18:53 283KB 电机控制 simulink PMSM
1
在电力电子领域,三相逆变器是一种广泛应用的设备,能够将直流电转换为交流电。本主题聚焦于三相逆变器的控制策略,特别是采用模型预测控制(MPC,Model Predictive Control),这是一种先进的控制方法,具有优化性能和前瞻性的特点。在这个场景下,MPC与离散化函数相结合,用于对逆变器的动态行为进行精确预测和高效控制。 模型预测控制的核心在于它的预测能力。它不是基于当前状态进行控制决策,而是基于未来一段时间内的系统行为预测。通过解决一个优化问题,MPC控制器能够找到在满足约束条件下使某一性能指标最小化的未来控制序列。这使得MPC特别适合处理非线性、多变量、有约束的控制问题,例如三相逆变器的电压和电流控制。 在实际应用中,三相逆变器的状态空间方程通常是连续的。然而,由于实际控制器工作在离散时间域,需要将这些连续模型离散化。"cont2dis.m"可能是实现这一转换的MATLAB脚本。离散化过程通常采用零阶保持(ZOH,Zero-Order Hold)或线性插值等方法,确保离散模型尽可能接近原始连续模型,同时保持控制器的稳定性。 "canbus.m"可能涉及到通信协议,如CAN总线,用于在逆变器控制系统和其他设备之间交换数据。在现代电力电子系统中,实时通信是至关重要的,因为它允许控制器获取反馈信息并迅速调整输出。 "Simscape Electrical"的仿真模型文件"MPC_3Phase_Inverter.slx"和".slxc"是MATLAB/Simulink环境下的三相逆变器模型,包括MPC控制器的配置。用户可以通过这个模型观察系统行为,验证控制策略的效果,进行参数调整和故障模拟。 "HIL MPC+DSP"可能指的是硬件在环(HIL,Hardware-in-the-Loop)测试,结合了MPC和数字信号处理器(DSP)。在HIL测试中,实际硬件与仿真模型交互,可以更准确地评估控制算法在真实系统中的性能,确保在物理设备上实施前的可靠性。 总结来说,这个主题涵盖了从三相逆变器的模型预测控制设计,到模型离散化,再到Simulink仿真和硬件在环测试的全过程。通过深入理解和掌握这些知识点,可以有效地设计出高效、稳定的三相逆变器控制系统。
2024-09-07 11:22:29 137KB simulink仿真模型
1