这是我学习PCL点云配准的代码,包括了VFH特征的使用、SHOT特征描述符、对应关系可视化以及ICP配准、PFH特征描述符、对应关系可视化以及ICP配准、3DSC特征描述符、对应关系可视化以及ICP配准、Spin Image自旋图像描述符可视化以及ICP配准、AGAST角点检测、SUSAN关键点检测以及SAC-IA粗配准、SIFT 3D关键点检测以及SAC-IA粗配准、Harris关键点检测以及SAC-IA粗配准、NARF关键点检测及SAC-IA粗配准、iss关键点检测以及SAC-IA粗配准、对应点已知时最优变换求解介绍以及SVD代码示例
2024-09-03 15:17:15 996.49MB 点云配准 关键点检测
1
训练好的火焰烟雾检测模型,YOLOV9
2024-09-02 09:26:00 98.01MB
1
孤岛效应是指电网中的分布式电源(如太阳能光伏系统或风能发电系统)在与主电网断开后,仍然持续供电并形成一个独立运行的小型电网。这种情况可能会对维修人员造成安全威胁,因为电网可能看起来已经断电,但实际上仍有电流流动。因此,孤岛检测对于确保电力系统的稳定性和安全性至关重要。 在三相逆变器孤岛检测中,MATLAB作为强大的数学计算和仿真工具,被广泛用于设计和验证各种孤岛检测算法。MATLAB 2023a版本提供了丰富的工具箱,如Simulink,可以构建复杂的电力系统模型并进行实时仿真。 在“islanding_4.mdl”这个模型文件中,我们可以预期它包含了一个三相逆变器的电路模型,以及相关的孤岛检测算法模块。通常,孤岛检测方法有以下几种: 1. **基于电压/频率变化的检测**:当电网与分布式电源断开时,电压和频率会迅速变化。通过监测这些变化并设定阈值,可以判断是否发生孤岛现象。 2. **基于谐波检测**:在孤岛模式下,电网中的谐波含量通常会增加。通过分析电流或电压的谐波分量,可以识别孤岛状态。 3. **基于相位跳变检测**:在电网断开时,相位角度会快速跳变。检测这种变化可以指示孤岛情况。 4. **基于无功功率/有功功率比的检测**:在孤岛条件下,电源的功率因数会发生变化。监测功率比的变化可以帮助识别孤岛现象。 5. **基于随机抖动策略的检测**:逆变器故意引入小幅度的电压或频率扰动,如果检测到反应,可能表明存在孤岛。 “孤岛检测仿真报告.docx”文件很可能是对MATLAB仿真的详细解释,包括了仿真步骤、结果分析和结论。报告可能涵盖了以下内容: 1. **模型介绍**:描述三相逆变器和电网的数学模型,以及所采用的孤岛检测算法。 2. **仿真设置**:说明仿真参数,如初始条件、时间步长和仿真时间。 3. **结果展示**:展示仿真过程中电压、电流、频率等关键变量的变化曲线,以及孤岛检测算法的输出。 4. **性能评估**:分析检测算法的响应时间、误报率和漏报率,评估其性能。 5. **讨论与结论**:根据仿真结果讨论算法的优点和不足,提出改进建议或对未来工作的展望。 通过这份报告和仿真模型,工程师或学生可以深入理解孤岛效应,学习和比较不同的检测方法,并对实际电力系统中的孤岛问题进行研究和优化。
2024-09-01 21:14:34 543KB 孤岛检测 matlab
1
【标题】:“入侵检测数据集CICIDS2018第二个文件” 【正文】: 入侵检测系统(Intrusion Detection System, IDS)是网络安全的重要组成部分,它能够监控网络或系统活动,识别潜在的攻击和异常行为。CICIDS2018数据集是用于入侵检测研究的一个广泛使用的数据集,由加拿大通信研究中心(Communications Research Centre, CRC)发布。这个数据集包含了各种真实的网络流量,包括正常流量以及不同类型的攻击流量,旨在为研究人员提供一个全面且多样化的测试平台。 “02-20-2018.csv”是CICIDS2018数据集中的一天数据,由于原始文件体积过大,被分割成多个部分进行上传。每个CSV文件包含了这一天内的网络流量记录,每条记录通常包括了多个特征,这些特征可能有以下几类: 1. **时间戳**:事件发生的具体时间,用于分析流量模式和攻击时间分布。 2. **源IP地址(Src IP)**和**目标IP地址(Dst IP)**:分别代表数据包发送方和接收方的IP地址,可用来识别攻击源和受害目标。 3. **源端口(Src Port)**和**目标端口(Dst Port)**:网络连接的通信端口,有助于识别特定服务或协议。 4. **协议类型(Protocol)**:如TCP、UDP、ICMP等,不同协议可能对应不同的攻击方式。 5. **字节(Bytes)**和**数据包(Packets)**:记录了通信过程中传输的数据量和数据包数量。 6. **持续时间(Duration)**:从连接建立到结束的时间长度,可以反映出正常会话和异常行为的区别。 7. **服务(Service)**:根据端口号识别出的网络服务,如HTTP、FTP等。 8. **旗标(Flags)**:TCP旗标字段,如SYN、ACK、FIN等,有助于识别连接状态和可能的攻击。 9. **TCP序列号(TcpSeq)**和**TCP确认号(TcpAck)**:TCP连接中的序列号和确认号,可能在某些攻击中被利用。 10. **TCP窗口大小(TcpWin)**:表明接收方能接收的数据量,异常值可能暗示攻击行为。 11. **ICMP代码(IcmpCode)**:对于使用ICMP协议的流量,此字段表示ICMP消息的子类型。 12. **ICMP类型(IcmpType)**:ICMP消息的类型,如回显请求、回显应答等。 13. **信息(Info)**:提供关于网络流量的附加信息,如HTTP方法(GET、POST等)。 14. **标签(Label)**:最重要的是,这个数据集中的每个记录都有一个标签,标明了流量是正常还是属于某种攻击类型,如DoS(拒绝服务)、DDoS(分布式拒绝服务)、Web攻击等。 通过对这些特征的分析,研究人员可以训练和评估入侵检测算法的性能,如基于机器学习的分类器。这些算法需要能够正确区分正常流量和攻击流量,以便在实际环境中有效应对网络安全威胁。同时,CICIDS2018数据集的复杂性和多样性使得它成为评估新IDS技术的有效工具,推动了网络安全领域的研究进展。
2024-08-31 10:35:18 652.88MB 数据集
1
在测试入侵检测模型时,看到好多论文用到了CICIDS系列的数据集,但是我当时没有下载成功,很麻烦还要自己搞AWS,然后在下载,作为一个计算机的菜鸡,实在没有下载成功。因此就掏钱下载了一个博主分享的数据集。虽然目前还没有用上,但是想分享出来。对于学生来说,整这么复杂的东西着实做不来,既然我有了,那就免费分享吧。由于上传文件大小有限制,因此分了两篇文章发布,不过个人认为这个文件也足够了。不知道平台会怎样界定下载积分设置,如果后期有积分限制的话,可以私信我或者评论区留下你的联系方式,我很乐意与你面费分享。最后希望这个数据集资源对你有用,有用的话就给我点个赞吧❀。
2024-08-31 10:31:10 440.67MB 数据集
1
基于openCV的检测系统源码.zip 基于openCV的检测系统源码.zip基于openCV的检测系统源码.zip基于openCV的检测系统源码.zip基于openCV的检测系统源码.zip基于openCV的检测系统源码.zip基于openCV的检测系统源码.zip基于openCV的检测系统源码.zip基于openCV的检测系统源码.zip基于openCV的检测系统源码.zip基于openCV的检测系统源码.zip基于openCV的检测系统源码.zip基于openCV的检测系统源码.zip基于openCV的检测系统源码.zip基于openCV的检测系统源码.zip基于openCV的检测系统源码.zip基于openCV的检测系统源码.zip基于openCV的检测系统源码.zip
2024-08-29 15:00:50 2.64MB opencv
1
密码模块安全技术要求(GM/T 0028-2014)国家标准文本,以及国家密码管理局发布的密码模块检测相关问题说明
1
在图像处理领域,OpenCV是一个强大的库,尤其在计算机视觉任务中被广泛应用。这个压缩包文件专注于使用OpenCV和Python进行轮廓检测,旨在帮助我们识别和处理图像中的特定对象,特别是红色和蓝色的目标。让我们详细了解一下这个主题。 我们要理解的是**二值化**。在图像处理中,二值化是一种将图像转换为黑白两色调的过程,以便更容易地分析和处理。通过设置一个阈值,图像中的像素会被分为两个类别:低于阈值的像素变为黑色,高于或等于阈值的像素变为白色。这样可以简化图像并突出目标特征。 接着是**阈值分割**,这是二值化的一个变种,它允许我们根据不同的条件来分割图像。在处理红蓝目标时,我们可以设置特定的色彩阈值,使红色和蓝色目标在图像中脱颖而出。 **轮廓检测**是图像处理中的重要步骤,OpenCV提供了`findContours`函数来实现这一功能。该函数可以找出图像中所有独立的不连续区域的边界,这对于识别和定位图像中的特定形状非常有用。在本案例中,我们可能使用它来找到红色和蓝色目标的边缘。 筛选是后续步骤,目的是从检测到的所有轮廓中选择出我们需要的目标。这通常通过比较轮廓的面积、周长、形状等特征来完成。例如,我们可以过滤掉面积过小或过大,或者形状不符合预期的对象。 **绘制和展示**是将结果可视化的重要环节。`cv2.drawContours`函数可以帮助我们在原始图像上绘制出检测到的轮廓,这不仅有助于验证算法的效果,也方便了后续的人工分析和调整。 压缩包中的`demo2.png`和`demo1.png`是示例图像,它们可能包含了红色和蓝色目标,供我们运行代码进行处理。`generate_contour.py`是主要的Python脚本,里面包含了上述提到的所有图像处理步骤。通过运行这个脚本,我们可以看到如何应用这些技术来检测和显示图像中的目标。 这个压缩包提供了一个完整的流程,从图像预处理到目标检测,再到结果展示,对于学习OpenCV和Python在图像处理上的应用,尤其是轮廓检测,是一个很好的实例。掌握这些知识后,你不仅可以识别特定颜色的目标,还能将其应用到更复杂的计算机视觉任务中,如目标跟踪、物体识别等。
2024-08-26 08:12:48 111KB 图像处理 opencv python
1
分为真实场景和SD生成场景 真实场景: 数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):494 标注数量(xml文件个数):494 标注类别数:2 标注类别名称:["huapo","luoshi"] 每个类别标注的框数: huapo count = 183 luoshi count = 351 SD场景: 数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):497 标注数量(xml文件个数):497 标注类别数:1 标注类别名称:["luoshi"] 每个类别标注的框数: luoshi count = 514 数据集介绍地址:bilibili.com/video/BV1Ss4y1i7XZ
2024-08-25 15:12:00 54.1MB 目标检测 数据集
1
目标检测的概念、应用及问题 目标检测是计算机视觉领域的核心问题之一,其任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置。目标检测是一个分类、回归问题的叠加,包含分类、定位、大小和形状等问题。目标检测的应用非常广泛,包括人脸检测、行人检测、车辆检测、遥感检测等。 一、基本概念 1. 目标检测的定义:目标检测的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置。 2. 目标检测的分类:计算机视觉中关于图像识别有四大类任务:分类、定位、检测和分割。目标检测是一个分类、回归问题的叠加。 3. 目标检测的核心问题:目标检测的核心问题包括分类问题、定位问题、大小问题和形状问题。 二、目标检测算法分类 基于深度学习的目标检测算法主要分为两类:Two Stage和One Stage。 1. Two Stage:先进行区域生成,然后通过卷积神经网络进行样本分类。任务流程:特征提取 --> 生成 RP --> 分类/定位回归。常见的Two Stage目标检测算法有:R-CNN、SPP-Net、Fast R-CNN、Faster R-CNN和R-FCN等。 2. One Stage:直接在网络中提取特征来预测物体分类和位置。任务流程:特征提取–> 分类/定位回归。常见的One Stage目标检测算法有:OverFeat、YOLOv1、YOLOv2、YOLOv3、SSD和RetinaNet等。 三、目标检测应用 目标检测的应用非常广泛,包括: 1. 人脸检测:智能门控、员工考勤签到、智慧超市、人脸支付、车站、机场实名认证、公共安全等。 2. 行人检测:智能辅助驾驶、智能监控、暴恐检测、移动侦测、区域入侵检测、安全帽/安全带检测等。 3. 车辆检测:自动驾驶、违章查询、关键通道检测、广告检测等。 4. 遥感检测:大地遥感、农作物监控、军事检测等。 四、目标检测原理 目标检测分为两大系列——RCNN系列和YOLO系列,RCNN系列是基于区域检测的代表性算法,YOLO是基于区域提取的代表性算法。另外还有著名的SSD是基于前两个系列的改进。 目标检测原理包括候选区域产生、滑动窗口、选择性搜索等。 1. 候选区域产生:目标检测技术都会涉及候选框(bounding boxes)的生成,物体候选框获取当前主要使用图像分割与区域生长技术。 2. 滑动窗口:滑动窗口是一种常用的目标检测算法,通过滑窗法流程图可以很清晰理解其主要思路。 3. 选择性搜索:选择搜索是一种提高计算效率的方法,通过对图像中最有可能包含物体的区域进行搜索。 目标检测是计算机视觉领域的核心问题之一,其应用非常广泛,包括人脸检测、行人检测、车辆检测、遥感检测等。理解目标检测的概念、应用及问题对研究和应用目标检测技术非常重要。
2024-08-24 13:32:11 1.87MB 目标检测
1