pytorch中自定义backward()函数。在图像处理过程中,我们有时候会使用自己定义的算法处理图像,这些算法多是基于numpy或者scipy等包。
那么如何将自定义算法的梯度加入到pytorch的计算图中,能使用Loss.backward()操作自动求导并优化呢。下面的代码展示了这个功能`
import torch
import numpy as np
from PIL import Image
from torch.autograd import gradcheck
class Bicubic(torch.autograd.Function):
def basis_function(
1