智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真模型及运行结果
2024-06-24 10:39:02 1.57MB matlab
1
通过深度Q学习进行路径规划,可通过上位机进行目标点、终点以及障碍物的设定
2024-06-24 10:38:24 235KB MATLAB 深度Q学习 路径规划
1
Dense 强化学习在自动驾驶安全验证中的应用 Dense 强化学习是一种基于人工智能的技术,旨在加速自动驾驶汽车的安全验证过程。传统的安全验证方法需要在自然istic驾驶环境中对自动驾驶汽车进行测试,这些测试需要大量的时间和经济投入。为了解决这个问题,研究人员开发了一种智能测试环境,使用基于 Dense 强化学习的背景代理来验证自动驾驶汽车的安全性能。 Dense 强化学习是一种基于深度强化学习的方法,通过编辑马尔科夫决策过程,删除非安全关键状态,重新连接关键状态,以便从自然istic驾驶数据中获取紧凑的信息。这种方法可以使神经网络从紧凑的信息中学习,实现了传统深度强化学习方法无法实现的任务。 在本研究中,研究人员使用 Dense 强化学习方法训练背景代理,来模拟自然istic驾驶环境中的安全关键事件。然后,他们使用高度自动化的测试车辆在高速公路和城市测试轨道上进行测试,结果表明,Dense 强化学习方法可以将评估过程加速多个数量级(10^3 到 10^5 倍)。 该方法的应用前景非常广阔,不仅可以用于自动驾驶汽车的安全验证,还可以用于其他安全关键的自动系统的测试和培训。随着自动驾驶技术的快速发展,我们正处于交通革命的前沿,这项技术将大大推动自动驾驶技术的发展。 知识点: 1. Dense 强化学习是一种基于深度强化学习的方法,用于加速自动驾驶汽车的安全验证过程。 2. 传统的安全验证方法需要在自然istic驾驶环境中对自动驾驶汽车进行测试,这些测试需要大量的时间和经济投入。 3. Dense 强化学习方法可以通过编辑马尔科夫决策过程,删除非安全关键状态,重新连接关键状态,以便从自然istic驾驶数据中获取紧凑的信息。 4. 该方法可以使神经网络从紧凑的信息中学习,实现了传统深度强化学习方法无法实现的任务。 5. 该方法可以用于自动驾驶汽车的安全验证,也可以用于其他安全关键的自动系统的测试和培训。 6. 该方法可以加速自动驾驶汽车的安全验证过程,达到多个数量级的加速效果。 7. 该方法的应用前景非常广阔,随着自动驾驶技术的快速发展,将大大推动自动驾驶技术的发展。 Dense 强化学习是一种基于人工智能的技术,旨在加速自动驾驶汽车的安全验证过程。其应用前景非常广阔,将大大推动自动驾驶技术的发展。
2024-06-24 10:34:58 3.19MB 自动驾驶仿真
1
本资源中的源码都是经过本地编译过可运行的,下载后按照文档配置好环境就可以运行。资源项目的难度比较适中,内容都是经过助教老师审定过的,应该能够满足学习、使用需求,如果有需要的话可以放心下载使用。有任何问题也可以随时私信博主,博主会第一时间给您解答!!! 本资源中的源码都是经过本地编译过可运行的,下载后按照文档配置好环境就可以运行。资源项目的难度比较适中,内容都是经过助教老师审定过的,应该能够满足学习、使用需求,如果有需要的话可以放心下载使用。有任何问题也可以随时私信博主,博主会第一时间给您解答!!! 本资源中的源码都是经过本地编译过可运行的,下载后按照文档配置好环境就可以运行。资源项目的难度比较适中,内容都是经过助教老师审定过的,应该能够满足学习、使用需求,如果有需要的话可以放心下载使用。有任何问题也可以随时私信博主,博主会第一时间给您解答!!!
2024-06-24 10:13:36 36.22MB java 毕业设计 课程作业 springboot
基于stm32的秒表计时器设计系统Proteus仿真(源码+仿真+全套资料)
2024-06-23 22:26:05 15.13MB
1
VB检测获取网卡MAC地址,没有什么可介绍的了,得到网卡的MAC地址,出厂时候厂家设置的MAC,比较底层的硬件信息。
2024-06-23 21:43:22 3KB VB源码-网络相关
1
取外部树型框节点文本系统结构:TreeView_GetSelection,TreeView_GetNextItem,GetTVItemText,TreeView_GetItem,SendMessage,SendMessageTV,======程序集1||||------TreeView_GetSelection||||------TreeView_GetNextItem||||======窗口程序
1
MAC地址基本唯一,其用途,地球人都知道。 最近有幸分析了一下取MAC地址的大量代码,提炼总结了一下,编了个小工具(为封装测试过程的衍生品),可用。并附有关键源码(试着点击对话框,会显示)。 VB API 调用可以解决取 MAC 地址。需要知道MAC数据块的偏移地址。数据块640字节,重要字段的偏移: dwNext As Long 'MAC数据块的首地址,偏移 0字节,L=4 dwAddressLength As Long '【偏移400字节,L=4 ;MAC地址段数,总==6】 sMACAddress(0 To 7) As Byte '【偏移404,L=8;MAC地址段列表, A(0)--A(N-1),N=6】。 还有一个笨办法:Ipconfig /All >>Text.txt /nul,读衍生数据文件,并非不可取,只是慢一些。
2024-06-23 21:25:29 8KB MAC 源码
1
YOLOv5是一种高效、快速的目标检测框架,尤其适合实时应用。它采用了You Only Look Once (YOLO)架构的最新版本,由Ultralytics团队开发并持续优化。在这个基于Python的示例中,我们将深入理解如何利用YOLOv5进行人脸检测,并添加关键点检测功能,特别是针对宽脸(WideFace)数据集进行训练。 首先,我们需要安装必要的库。`torch`是PyTorch的核心库,用于构建和训练深度学习模型;`torchvision`提供了包括YOLOv5在内的多种预训练模型和数据集处理工具;`numpy`用于处理数组和矩阵;而`opencv-python`则用于图像处理和显示。 YOLOv5模型可以通过`torch.hub.load()`函数加载。在这个例子中,我们使用的是较小的模型版本'yolov5s',它在速度和精度之间取得了较好的平衡。模型加载后,设置为推理模式(`model.eval()`),这意味着模型将不进行反向传播,适合进行预测任务。 人脸检测通过调用模型对输入图像进行预测实现。在`detect_faces`函数中,首先对图像进行预处理,包括转换颜色空间、标准化像素值和调整维度以适应模型输入要求。然后,模型返回的预测结果包含每个检测到的对象的信息,如边界框坐标、类别和置信度。在这里,我们只关注人脸类别(类别为0)。 为了添加关键点检测,定义了`detect_keypoints`函数。该函数接收检测到的人脸区域(边界框内的图像)作为输入,并使用某种关键点检测算法(这部分代码未提供,可以根据实际需求选择,例如MTCNN或Dlib)找到人脸的关键点,如眼睛、鼻子和嘴巴的位置。关键点坐标需要转换回原始图像的坐标系。 最后,`detect_faces`函数返回的人脸和关键点信息可以用于在原始图像上绘制检测结果。这包括边界框和置信度信息,以及关键点的位置,以可视化验证检测效果。 需要注意的是,这个示例假设已经有一个训练好的YOLOv5模型,该模型是在宽脸数据集上进行过训练,以适应宽角度人脸的检测。宽脸数据集的特点是包含大量不同角度和姿态的人脸,使得模型能够更好地处理真实世界中的各种人脸检测场景。 如果要从零开始训练自己的模型,你需要准备标注好的人脸数据集,并使用YOLOv5的训练脚本(`train.py`)进行训练。训练过程中,可能需要调整超参数以优化模型性能,如学习率、批大小、训练轮数等。 总的来说,这个Python示例展示了如何集成YOLOv5进行人脸检测和关键点检测,适用于对实时或近实时应用进行人脸分析的场景。为了提高性能,你可以根据实际需求调整模型大小(如使用'yolov5m'或'yolov5l'),或者自定义训练以适应特定的数据集。同时,关键点检测部分可以替换为更适合任务的算法,以达到更好的效果。
2024-06-23 16:42:18 24KB python
1
微信小程序借书小程序(附效果截图和源码及使用教程) 以大学生为主要适用对象,专注于大学生而设计的一款小程序,鼓励当代大学生阅读
2024-06-23 16:17:38 3.11MB 项目源码 毕业设计 安卓开发 微信
1