修剪YOLO
使用模型修剪方法获得紧凑模型,即基于YOLOv5的Pruned-YOLOv5。
注意:
1.该项目基于 。 首先将其安装。 然后,使用此处提供的模型配置文件( coco_yolov5l.yaml )和网络模块定义文件( common.py )替换原始的对应文件。
2.参考 ,我们还使用次梯度方法进行稀疏度训练( sparsity.py )。 此外,稀疏训练和微调相结合以简化修剪流程。 在训练过程中,我们介绍了软掩膜策略和稀疏因子余弦衰变。
3.使用train_sr.py进行稀疏火车,可以直接进行修剪,而无需进行微调。
4.请把prune_channel_v5_weightingByKernel.py和prune_layer_v5_weightingByKernel.py放在主目录( / yolov5 / )中。 前者用于通道修剪,后者用于层修剪。 模型修剪可以由他们
2021-05-01 23:30:16
276KB
Python
1