目的: 在训练神经网络的时候,有时候需要自己写操作,比如faster_rcnn中的roi_pooling,我们可以可视化前向传播的图像和反向传播的梯度图像,前向传播可以检查流程和计算的正确性,而反向传播则可以大概检查流程的正确性。
实验
可视化rroi_align的梯度
1.pytorch 0.4.1及之前,需要声明需要参数,这里将图片数据声明为variable
im_data = Variable(im_data, requires_grad=True)
2.进行前向传播,最后的loss映射为一个一维的张量
pooled_feat = roipool(im_data, rois.view(
1