Big5-性格React烧瓶 这是一个项目,我们可以在该项目上构建一个React应用并调用端点进行预测。 使用的模型是随机森林回归器和随机森林分类器。 使用myPersonality项目( )的数据集对模型进行训练。 模型使用回归模型生成预测的人格得分,并使用分类模型针对每个人格特征生成二元类别的概率。 技术领域 后端烧瓶 前端React 修改后的准备 Create-react-app创建一个基本的React应用程序。 接下来,加载了引导程序,该引导程序使我们可以为每个屏幕尺寸创建响应式网站。 在App.js文件中,添加了带有textarea和Predict按钮的表单。 将每个表单属性添加到状态,并在按下Predict按钮时,将数据发送到Flask后端。 将样式添加到页面的App.css文件。 Flask应用程序具有POST终结点/预测。 它接受输入值作为json,将其转换为数组,并使
2023-03-08 15:34:48 116.93MB deep-learning reactjs word word-embeddings
1
让我们从具有Amazon产品评论的数据集开始,构建结构化的类:6个“级别1”类,64个“级别2”类和510个“级别3”类。探索用于分层文本分类的各种方法。 train_40k.csv unlabeled_150k.csv val_10k.csv
2023-03-07 22:34:42 37.3MB 数据集
1
NLP图像到文本 从图像中提取文本的代码 pip install -r requirements.txt 如果遇到找不到文件错误,如下所示: FileNotFoundError: [Errno 2] No such file or directory: 'tesseract' 运行以下命令 brew install tesseract 然后如下运行image-to-text.py: python image-to-text.py 我们观察到,对于干净的输入,准确性很高。 参见输入2。嘈杂的输入可能不会产生相同的效果! 一些示例输入和输出: 输入: 输出: DON’T WATCH THE CLOCK; KEEP GOING. SAM LEVENSON / / 7 J .- - flCESSc
2023-03-04 22:03:55 953KB ocr python3 text-recognition tesseract-ocr
1
Chatbot_CN 基于深度学习、强化学习、对话引擎的多场景对话机器人 • • • • • • • • Made by Xu • :globe_with_meridians: 项目说明     Chatbot_CN 是一个基于第三代对话系统的多轮对话机器人项目,旨在于开发一个结合规则系统、深度学习、强化学习、知识图谱、多轮对话策略管理的 聊天机器人,目前随着时间的慢慢发展,从最初的一个 Chatbot_CN 项目,发展成了一个 Chatbot_* 的多个项目。目前已经包含了在多轮任务型对话的场景中,基于话术(Story)、知识图谱(K-G)、端到端对话(E2E)。目的是为了实现一个可以快速切换场景、对话灵活的任务型机器人。 同时,Chatbot_CN 不仅仅是一个对话系统,而是一套针对客服场景下的完整人工智能解决方案。对话是解决方案的核心和最重要一环,但不仅限于对话,还包括智能决策
1
Sublime Text 4(Build 4126)修改运行配置为终端运行(内含C/C++、Java、Python四门语言的配置)。配置效果就是能够编译完用系统终端cmd运行程序,而不是用 Sublime Text 自带的终端运行,因为其自带的终端有很多不方便的地方,例如输入操作的不方便等等。具体的配置方法以及Sublime Text 4(Build 4126)的下载注册见博客:https://blog.csdn.net/qq_40430360/article/details/125652331
2023-02-28 19:45:29 2KB sublime text c++ 配置
1
sublime text 3 verilog 代码高亮和自动提示
2023-02-24 16:16:50 7KB sublime verilog
1
这是介绍的TAC-GAN模型的Tensorflow实现。 文本条件辅助分类器生成对抗网络(TAC-GAN)是一种文本到图像的生成对抗网络(GAN),用于从文本描述中合成图像。 TAC-GAN在 -GAN的基础上,通过将生成的图像置于文本描述而不是类标签进行调节。 在提出的TAC-GAN模型中,基于噪声矢量和另一个包含文本描述的嵌入式表示的矢量来构建生成网络的输入矢量。 尽管鉴别器类似于AC-GAN的鉴别器,但在进行分类之前,它也得到了增强,可以接收文本信息作为输入。 为了将图像的文本描述嵌入到矢量中,我们使用了 以下是TAC-GAN模型的体系结构 先决条件 以下是一些重要的依赖项,其余的可以使用requirements.txt安装 的Python 3.5 :用于跳过思想向量 :用于跳过思想向量 :用于跳过思想向量 建议使用虚拟环境来运行此项目,并通过使用文件在其中安装所需的依赖
2023-02-22 01:29:52 57KB Python
1
文本生成keras 使用CNN和GRU层的Keras文本生成实现
2023-02-16 18:21:26 96KB text keras text-generation gru
1
Sublime Text 3.3126x86 简体中文汉化版(Windows 32位)
2023-02-15 16:48:04 25.24MB Sublime Text
1
CommonGen:面向生成常识推理的受限文本生成挑战 @article{lin2019comgen, author = {Bill Yuchen Lin and Wangchunshu Zhou and Ming Shen and Pei Zhou and Chandra Bhagavatula and Yejin Choi and Xiang Ren}, title = {CommonGen: A Constrained Text Generation Challenge for Generative Commonsense Reasoning}, journal = {Findings of EMNLP}, year = {2020} } CommonGen是一个新的受约束文本生成数据集,它需要不同种类的常识来生成有关日常场景的句子,并因此针对生成型
1