包含windwos-caffe源码、faster-rcnn 、ssd、lstm ,自己之前用过的深度学习源码全部打包一起上传。
2024-06-27 12:19:30 43.57MB caffe faster-rcnn ssd lstm
1
【急性肾损伤(AKI)】是重症监护病房(ICU)中常见且严重的并发症,影响着大约60%的ICU患者。AKI的发生与较高的短期和长期死亡率及发病率相关,可能导致慢性肾病风险增加,降低长期生存质量和生活品质。由于其复杂的病理生理机制,传统的决策算法在诊断和管理上存在局限。 【人工智能(AI)和深度学习在AKI中的应用】近年来,AI和深度学习模型被广泛应用于AKI的预测、诊断和亚表型分析,以弥补传统方法的不足。这些模型能够处理大量临床数据,更准确地捕捉AKI的复杂动态变化。通过机器学习,可以预测AKI的发展,从而实现早期干预,降低不良后果。 【研究方法】研究者对过去18个月内发表的相关文献进行了系统审查,主要在PubMed数据库中搜索与AKI预测、模型开发和验证相关的文章。他们筛选出46篇全文进行详细评估,最终选择了30项研究,其中27项涉及AKI预测模型,两项专注于AKI亚表型,一项同时涉及两者。 【患者群体与数据来源】研究涵盖了不同来源的患者群体,如单一中心和多中心,最常见的数据源是重症监护医疗信息数据库(MIMIC-III)。研究样本包括综合ICU、脓毒症、手术、糖尿病酮症酸中毒、失血性休克和急性脑损伤患者。AKI的定义主要依据KDIGO标准,部分研究也使用了AKIN标准。 【预测模型】逻辑回归是最常见的建模技术,其次是深度学习模型,如循环神经网络(RNN)、一维卷积神经网络(1D-CNN)和长短期记忆(LSTM)网络。这些模型通过分析时间序列数据,如生理参数和实验室结果,提供了连续、实时的AKI风险预测。深度学习模型在预测性能上表现出优越性,例如,双向LSTM网络、1D-CNN模型等。 【性能评估】模型的性能常用接收器操作特性曲线(AUROC)、灵敏度、特异性、正预测值(PPV)、负预测值(NPV)、准确性和精确率-召回曲线(AUPRC)等指标进行评估。一些模型通过动态分析患者数据趋势,提高了预测准确性。 【可解释性】深度学习模型的可解释性也在逐步提高,例如,通过积分梯度测量确定影响AKI风险的关键因素,如肌酐和尿量变化。 【未来方向】多任务模型的提出,旨在同时预测AKI的不同阶段,优化了预测效率。随着AI和深度学习技术的不断发展,它们在ICU中预测和管理AKI的潜力将进一步增强,有望改善患者预后,降低医疗成本。
2024-06-25 09:33:51 18KB
1
在当前的深度学习领域,轻量化模型已经成为了一个重要的研究方向,尤其在移动设备和嵌入式系统的应用中。本文将探讨轻量化网络的背景、设计思路以及以MobileNet为例的具体实现,来阐述这一领域的核心概念。 首先,让我们理解为什么需要轻量化网络。神经网络的发展历程见证了模型从简单的前馈网络到复杂的深度结构的演变,如AlexNet、VGG、GoogLeNet、ResNet等。这些模型虽然在准确率上取得了显著的进步,但它们的计算量和参数数量巨大,对硬件资源的要求较高,这限制了它们在资源受限的环境(如智能手机、无人机、物联网设备)中的应用。因此,轻量化网络的必要性应运而生,旨在在保持一定性能的前提下,降低模型的计算复杂度和内存占用,以适应这些边缘计算场景。 实现轻量化网络的主要思路有多种。一种方法是压缩已经训练好的模型,通过知识蒸馏、权值量化、剪枝和注意力迁移等技术减小模型规模。另一种是直接设计轻量化架构,例如SqueezeNet、MobileNet、ShuffleNet和EfficientNet,它们通过创新的卷积结构来减少计算量。此外,还可以通过优化卷积运算,如使用Im2col+CEMM、Winograd算法或低秩分解来提高运算效率。硬件层面的支持也不可忽视,例如TensorRT、Jetson、Tensorflow-lite和Openvino等工具可以加速模型在不同平台上的部署。 MobileNet系列作为轻量化模型的代表,尤其是其深度可分离卷积的设计,极大地降低了计算成本。传统卷积涉及到大量的乘加运算,而深度可分离卷积将卷积过程分为两步:先进行深度卷积(即按通道的卷积),然后进行逐点卷积。这样,深度可分离卷积的计算量仅为标准卷积的很小一部分,同时减少了参数量。以MobileNet V1为例,尽管其参数量远小于其他大型网络,但在没有残差连接和ReLU激活函数的低精度问题下,其性能仍有所局限。为了解决这些问题,MobileNet V2引入了倒置残差块,增强了特征流动,提高了模型性能。 总结来说,轻量化网络的发展是深度学习在有限资源环境应用的关键。通过深入理解神经网络的结构,设计创新的卷积操作,结合模型压缩技术和硬件优化,我们能够构建出在保持高效率的同时兼顾准确性的模型。MobileNet的成功实践为未来轻量化模型的设计提供了宝贵的启示,进一步推动了深度学习在边缘计算领域的广泛应用。
2024-06-24 20:00:51 6.85MB 深度学习
1
PEMS 数据集是由美国加利福尼亚州的交通部门联合其他伙伴机构建立的统一公开交通数据库。美国加利福尼亚州的交通部门在交通路网上大约设置了超过39000 个交通监测站,交通管理部门安装在路网上的各类传感器可以实时地收集所在高速公路上的交通状况信息,越是接近市区人口密集的地区,传感器布置的也越密集,从分布上来看,这些传感器大多被安置在靠近市区的路段上。PEMS提供了超过十年的历史交通状况数据,整合了有关加州运输公司以及其他交通机构系统的各类信息。 PemsD7 交通数据集:数据由分布在加利福尼亚州高速公路系统(CalTrans)中选择 228 个站点数据。数据集从30 秒的数据样本聚合到5 分钟的时间间隔内。时间范围在 2012 年5 月和6 月的工作日的228 个站点交通速度信息,数据包括邻接矩阵和特征矩阵。 邻接矩阵是通过分析已有时空交通数据的特性,构建一种新的具有相似交通流量模式的 矩阵,特征矩阵是每个传感器节点的时间序列特征矩阵。
2024-06-24 10:18:24 40.78MB 深度学习 交通预测 数据挖掘 交通网络
1
该资源为pip-24.0-py3-none-any.whl,欢迎下载使用哦!
2024-06-23 12:00:51 2.01MB pip 深度学习
1.本项目以相关平台音乐数据为基础,以协同过滤和内容推荐算法为依据,实现为不同用户分别推荐音乐的功能。 2.项目运行环境:包括 Python 环境、MySQL 环境和 VUE 环境。需要安装的依頼包为: Django 2.1、PyMySQL 0.9.2、jieba 0.39、xlrd 1.1.0、gensim 3.6.0 3.项目包括4个模块:数据请求及存储、数据处理、数据存储与后台、数据展示。其中数据处理部分包含计算歌曲、歌手、用户相似度和计算用户推荐集。数据存储与后台部分主要在PyCharm中创建新的Django项目及5个模板,即主页、歌单、歌手、歌曲和用户。前端实现的功能包括:用户登录和选择偏好歌曲、歌手;为你推荐(用户行为不同,推荐也不同) ;进入各页面时基于内容的推荐算法为用户推荐歌单,协同过滤算法为用户推荐歌曲、歌手;单击时获取详细信息,提供单个歌单、歌曲、歌手、用户的推荐;个性化排行榜(将相似度由大到小排序);我的足迹。 4.项目博客: https://blog.csdn.net/qq_31136513/article/details/132335950
2024-06-20 19:08:27 229.93MB mysql vue.js django 推荐算法
人脸识别_基于yolov5_arcface的人脸识别项目
2024-06-15 20:51:40 3.41MB yolo 人脸识别 深度学习 人工智能
1
yolov8 yolov8_使用yolov8实现行人检测算法_优质项目
2024-06-14 17:19:15 155.52MB 行人检测 目标检测 深度学习
1
参与度识别模型 :hugging_face: TensorFlow和TFLearn实现: 敬业度是学习体验质量的关键指标,并且在开发智能教育界面中起着重要作用。 任何此类界面都需要具有识别参与程度的能力,以便做出适当的响应; 但是,现有数据非常少,新数据昂贵且难以获取。 这项工作提出了一种深度学习模型,可通过在进行专门的参与数据训练之前,通过对容易获得的基本面部表情数据进行预训练来改善图像的参与识别,从而克服数据稀疏性挑战。 在两个步骤的第一步中,使用深度学习训练面部表情识别模型以提供丰富的面部表情。 在第二步中,我们使用模型的权重初始化基于深度学习的模型以识别参与度。 我们称其为参与模型。 我们在新的参与度识别数据集上训练了该模型,其中包含4627个参与度和脱离度的样本。 我们发现参与模型优于我们首次应用于参与识别的有效深度学习架构,以及优于使用定向梯度直方图和支持向量机的方法。 参考 :hugging_face: 如果您使用我们的
2024-06-12 17:37:04 112KB education deep-learning Python
1
pytorch Pytorch_pytorch深度学习教程之循环神经网络
2024-06-11 09:40:50 2KB pytorch 深度学习
1