机组组合问题属于规划问题,即要在决策变量的可行解空间里找到一组最优解,使得目标函数尽可能取得极值。对于混合整数规划,常用的方法有分支定界法,benders分解等。CPLEX提供了快速的MIP求解方法,对于数学模型已知的问题,只需要按照程序规范在MATLAB中编写程序化模型,调用CPLEX求解器,即可进行求解。 建立含安全约束的机组最优组合(SCUC)模型如下:目标为最小化成本,包括发电带来的煤耗成本和机组启停产生的开停机成本。 约束条件包含:功率平衡约束、热备用约束、机组出力约束、机组爬坡约束、机组起停时间约束、起停费用约束、潮流安全约束。 模型简化:由上小节构建的机组组合优化模型,煤耗成本采用二次函数,当系统规模较大时(如节点数超过1000),求解起来将消耗大量时间。因此我们可以对原模型进行线性化处理。将煤耗函数分段线性化,分为m段。 校验程序的算例基于IEEE-30节点标准测试系统。系统包含30个节点,6台发电机组。要求确定系统最优机组组合,使得系统各机组总运行成本(煤耗成本+启停成本)最小化。
2024-01-19 22:34:45 211KB matlab CPLEX 机组组合 优化规划
1
matlab实现视频中动态目标跟踪,matlab实现视频中动态目标跟踪
2024-01-14 19:22:59 1.29MB matlab实现视频中动态目标跟踪
1
通过matlab编程求解旅行商问题(TSP) 通过matlab编程求解旅行商问题(TSP) 通过matlab编程求解旅行商问题(TSP) 通过matlab编程求解旅行商问题(TSP) 通过matlab编程求解旅行商问题(TSP)
2024-01-13 18:49:01 3KB matlab 旅行商问题 TSP
1
本程序的功能是用牛顿拉夫逊法进行潮流计算
1
MATLAB算法实战应用案例精讲-科莫多巨蜥算法-MATLAB实现源代码KMA
2023-12-28 20:10:19 20KB matlab
1
资源名称:基于MATLAB实现霍夫曼Huffman编码译码GUI界面设计 源码.rar 面向人群:计算机、人工智能方向毕业生、小白等 资源类型:毕业设计、源码
2023-12-24 21:47:34 15KB 毕业设计 课程设计 项目源码 MATLAB
1
matlab开发-利用Matlab实现工业数据分析。突出显示自动导入分析文本数据,执行基本统计和可视化
2023-12-15 11:20:03 278KB
1
MATLAB实现基于SVM-Adaboost支持向量机结合AdaBoost多输入分类预测 基本介绍 1.MATLAB实现基于SVM-Adaboost支持向量机结合AdaBoost多输入分类预测; 2.运行环境为Matlab2018b; 3.输入多个特征,分四类预测; 4.data为数据集,excel数据,前多列输入,最后输出四类标签,主程序运行即可,所有文件放在一个文件夹; 5.可视化展示分类准确率。 模型描述 SVM-Adaboost支持向量机结合AdaBoost多输入分类预测是一种基于机器学习和集成学习的预测方法,其主要思想是将支持向量机(SVM)和AdaBoost算法相结合,通过多输入模型进行预测。 具体流程如下: 数据预处理:对原始数据进行清洗、归一化和分割等预处理步骤。 特征提取:利用SVM模型对数据进行特征提取,得到多个特征向量作为AdaBoost算法的输入。 AdaBoost模型训练:利用AdaBoost算法对多个特征向量进行加权组合,得到最终的预测结果。 模型评估:对预测结果进行评估。 模型优化:根据评估结果对模型进行优化,可以尝试调整模型的参数、改变AdaBoos
2023-12-11 12:48:07 1KB matlab 支持向量机
1
自己整理的语音信号处理matlab实现详细文档及其代码,包括WORD文档和.m文件实现
2023-12-09 23:35:16 1.13MB 语音信号 matlab
1
典型相关分析matlab实现代码 迁移学习 Transfer Learning Everything about Transfer Learning (Probably the most complete repository?). Your contribution is highly valued! If you find this repo helpful, please cite it as follows: 关于迁移学习的所有资料,包括:介绍、综述文章、最新文章、代表工作及其代码、常用数据集、硕博士论文、比赛等等。(可能是目前最全的迁移学习资料库?) 欢迎一起贡献! 如果认为本仓库有用,请在你的论文和其他出版物中进行引用! @Misc{transferlearning.xyz, howpublished = {\url{http://transferlearning.xyz}}, title = {Everything about Transfer Learning and Domain Adapation}, author = {Wang, Jindong and othe
2023-12-01 15:17:20 1.23MB 系统开源
1