本设计是基于XL1509的小功率DCDC降压模块,版主已经打板验证基本功能,适合广大学生以及比赛机器人使用没主要特点如下: 4.5V到40V宽电压输入(使用时请保持余量); 输出1.23V到37V可调节; 最大150KHZ的开关频率; 最大输出电流2A(输出5V时候,请保持余量); 以上为芯片自身特性,下面是版主加入的一些功能及资源的附加内容: 加入了一级RCD缓冲,用于开机缓启动; 做成了小尺寸的模块; 附带数据手册; 集成了封装库和原理图库,方便直接使用; 附带一份DCDC布局指南; 已经打板焊接测试,输出正常,缓启动约50MS(和选取元器件参数有关); 赚个人气,感谢大家支持
1
摘 要 某冶金厂全厂总降压变电所的电气设计是对工厂供电具有针对性的设计,设计对工厂供电方式、主要设备的选择、保护装置的配置进行了详细的叙述,内容主要包括高压侧和低压侧的短路计算,设备选择及校验,主要设备继电保护设计,配电装置设计等。 在供电设计中某些重要工程项目存在几种方案,因此有必要进行经济比较,最后确定合理方案。一般需要比较的工程项目有:电源系统方案,变电所位置方案,变压器容量及台数方案,变电站主结线及布置方案,电压等级及厂区供电系统方案,车间供电方案等。 本设计通过计算出的有功、无功和视在功率选择变压器的大小和相应主要设备的技术参数,再根据用户对电压的要求,计算电容器补偿装置的容量,从而得出所需电容器的大小,选择工厂高低压配电系统及其一次设备,以及工厂电力线路;通过对短路电流,短路容量的相关计算,对所选设备及线路进行校验保护。同时,按照国家的一些技术标准设计工厂供电系统的继电保护,二次回路保护。 目录 摘 要 I 第1章 绪论 1 1.1 课程设计的目的与任务 1 1.2 设计依据 1 1.3 负荷情况、条件及设计步骤 2 第2章 负荷计算 4 2.1 负荷计算 4 2.1.1 负荷计算的目的 4 2.1.2 负荷计算的基本公式 4 2.1.3 负荷计算 5 2.1.4 负荷计算基本公式 5 第3章 变压器的选择 12 3.1 变压器选择原则 12 3.2 变压器台数、容量及类型选择 13 3.3 供电系统中的功率损耗 13 第4章 改善功率因素装置设计 14 4.1 无功功率补偿 14 4.1.1 提高功率因数的意义 15 4.1.2 提高功率因数的方法 15 4.1.3 电力电容器的安装方式 15 4.1.4 电容器补偿量的计算 15 4.1.5 全厂计算负荷 16 第5章 高、低压电网的导线型号及截面的选择 16 5.1.1 高低压导线选择原则 16 5.1.2 高压侧导线截面选择 17 5.1.3 低压侧导线截面选择 17 第6章 变电所主接线方案的设计 19 6.1 总变电所的主接线设计的原则和意义 19 6.2 电气主接线的基本方式 20 6.3 本设计的主接线的基本方式 20 6.4 一次接线系统图 21 第7章 短路电流计算 22 7.1 短路电流计算的意义和方法 22 7.2 短路计算 22 7.2.1 绘制短路电流计算示意图 22 7.2.2 短路电流及容量的计算 23 7.2.3 短路计算表 26 第8章 变电所一次设备的选择与校验 26 8.1 按正常工作条件选择 26 8.1.1 按工作电压选择 26 8.1.2 按工作电流选择 27 8.1.3 按断流能力选择 27 8.2 按短路条件校验 27 8.3 开关设备的校验选择 29 8.3.1 断路器的选择和校验 29 8.3.2 隔离开关的选择与校验 29 8.3.3 3.熔断器的选择 30 第9章 继电保护整定及二次保护 31 9.1 总变电所的继电保护装置 31 9.1.1 对继电保护装置的基本要求 31 9.2 继电保护的灵敏系数 32 9.3 电力变压器保护装置的配置要求 32 9.4 变压器过电流保护的整定计算 33 9.4.1 过电流保护动作电流的整定计算 33 9.4.2 过电流保护动作时间的整定计算 33 9.4.3 过电流保护灵敏系数的校验 34 9.5 变压器电流速断保护的整定计算 34 9.5.1 电流速断保护动作电流的整定计算 34 9.5.2 电流速断保护灵敏系数的校验 34 9.6 变压器过负载保护的整定计算 35 9.6.1 过负荷保护动作电流的整定计算 35 9.6.2 过负荷保护动作时间得整定计算 35 9.7 高压进线线路的过电流保护整定计算 35 9.7.1 过电流保护动作电流的整定计算 35 9.7.2 过电流保护动作时间 36 9.7.3 过电流保护灵敏系数的校验 36 第10章 心得体会 37 参考文献 38 附录 39
2022-05-14 15:19:19 514KB 配电系统 负荷计算 短路计算 主接线
1
降压转换器的输入端连接一个 1 V 电源,输出端连接一个具有 0.1 欧姆内阻的 0.5 V 电压,代表要充电的电池。 使用闭环 PI 控制器控制输出功率(充电功率)。 控制器是通过调节降压转换器的PWM占空比来改变输出电压。 输出 V、I 被测量并乘以反馈给控制器以与目标充电功率进行比较。 因此,实现了闭环功率控制。 DashBoard 工具用于使模型更加有趣和直观。 欢迎通过电子邮件发送任何问题和建议:chunpeng_li@hotmail.com。 我会尽量回复。
2022-05-13 10:10:24 127KB matlab
1
描述 LT:registered:3652 是一款完整的单片式、降压型电池充电器,可在 4.95V 至 32V 的输入电压范围内运作。LT3652 提供恒定电流 / 恒定电压充电特性,最大充电电流可在外部设置至高达 2A。该充电器采用了一个 3.3V 浮置电压反馈基准,因此可以使用一个电阻分压器来设置任何期望并可高达 14.4V 的电池浮置电压。 LT3652 运用了一个输入电压调节环路,如果输入电压降至一个编程电平 (由一个电阻分压器来设定) 以下,则该输入电压调节环路将减小充电电流。当 LT3652 由一块太阳能电池板来供电时,输入调节环路将用于把太阳能电池板保持在峰值输出功率。 可以通过配置使 LT3652 在充电电流降至编程最大值的 1/10 (C/10) 以下时终止充电操作。当充电操作终止时,LT3652 将进入一种低电流 (85μA) 待机模式。如果电池电压下降至编程浮置电压以下达 2.5%,则一种自动再充电功能将起动一个新的充电周期。LT3652 还包含一个可编程安全定时器,用于在到达一个期望时间之后终止充电操作。这在电流小于 C/10 的条件下提供了 "Top-Off” 型充电。 典型应用: 特点: 提供用于太阳能应用中峰值功率跟踪 (MPPT) 的输入电源电压调节环路 宽输入电压范围:4.95V 至 32V (40V 绝对最大值) 可编程充电速率高达 2A 可由用户选择的充电终止:C/10 或内置充电终止定时器 可采用电阻器设置并高达 14.4V 的浮置电压能支持锂离子 / 锂聚合物电池、LiFePO4(磷酸铁锂) 电池、SLA (密封铅酸) 电池化学组成 当电池电压 ≤ 4.2V 时无需 VIN隔离二极管 1MHz 固定频率 0.5% 浮置电压基准准确度 5% 充电电流准确度 2.5% C/10 检测准确度 二进制编码集电极开路状态引脚 耐热性能增强型 12 引脚 3mm x 3mm DFN12 和 MSE 封装 太阳能供电 2A 降压型电池充电器测试波形图: 2A 降压型电池充电器电路板 PCB 截图: 附件内容截图:
2022-05-12 12:23:55 1.08MB 电池充电器 MPPT lt3652 电路方案
1
本应用报告首先给出了降压式开关电路(buck)在上管开通瞬间的的一个等效谐振回路模型。 根据该模型推导出使得开关振铃最小化的阻容缓冲电路(snubber)的参数计算公式,并结合参 数公式给出了一套snubber 电路的快速设计方法,最后以LM5119 的EVM 为例给出了snubber 的设计过程和结果
2022-05-09 12:10:35 874KB 综合文档
1
基于LM5117降压型开关电源的设计
2022-05-07 19:33:15 2.57MB 基于 LM5117 降压型开关电源 设计
1
基于LM5117的降压型直流开关稳压电源
2022-05-04 11:14:08 584KB 基于 LM5117 降压型 直流
1
目前,高频、高效的DC/DC转换器在汽车电子系统中的应用越来越多。高开关频率可以使用较小的功率电感和输出滤波电容,从而减小系统的体积,提高紧凑性并降低成本。高工作效率可以延长汽车电池的使用时间,降低系统功耗,从而减少发热量,优化系统的热设计并进一步提高可靠性。但高开关频率会降低系统的工作效率。因此设计汽车电子应用的DC/DC降压变换器时必须在开关频率和工作效率之间作一些折衷处理。   DC/DC降压变换器的最高开关频率受限于DC/DC的最高输入电压、最低输出电压和功率管的最小开启时间,理论极限值可以由下式计算:   公式1   其中fSW(MAX)为最大的开关频率,tON(MIN)为
1
直流降压
2022-05-02 16:25:54 31KB 降压斩波电路
1
这种电源的工作原理,可以借助于图2-4来分析。当开关管T导通时,电源的输入电压U加电感L。电感中的电流i线性上升,给电容器C充电并向输出端的负载R供电。
2022-05-01 19:08:25 16KB 降压式 开关 稳压电源 电路图
1