1、资源内容:基于Matlab实现蚁群算法路径规划仿真(源码+说明文档).rar 2、适用人群:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业或毕业设计,作为“参考资料”使用。 3、更多仿真源码和数据集下载列表(自行寻找自己需要的):https://blog.csdn.net/m0_62143653?type=download 4、免责声明:本资源作为“参考资料”而不是“定制需求”不一定能够满足所有人的需求,需要有一定的基础能够看懂代码,能够自行调试,能够自行添加功能修改代码。由于作者大厂工作较忙,不提供答疑服务,如不存在资源缺失问题概不负责,谢谢理解。
2024-06-17 20:34:28 728KB matlab
群算法(ant colony algorithm,ACA)是由意大利学者M.Dorigo等人于20世纪90年代初提出的一种新的模拟进化算法,其真实地模拟了自然界蚂蚁群体的觅食行为。M.Dorigo等人将其用于解决旅行商问题(traveling salesman problem,TSP),并取得了较好的实验结果。 近年来,许多专家学者致力于蚁群算法的研究,并将其应用于交通、通信、化工、电力等领域,成功解决了许多组合优化问题,如调度问题(job-shop scheduling problem)、指派问题(quadratic assignment problem)、旅行商问题(traveling salesman problem)等。
2024-06-11 02:57:18 2KB matlab 蚁群算法 TSP问题
1
适合新手学习,注释全面。定点选址问题是寻找最佳位置来满足一定条件或最小化某种成本的问题,常见的应用包括设施选址、网络规划等。 下面是使用粒子群算法解决定点选址问题的一种基本方法: 1. 定义目标函数 2. 初始化粒子群 3. 计算适应度值 4. 更新个体最优解和群体最优解 5. 更新速度和位置 6. 判断停止条件 7. 重复步骤3-6,直到满足停止条件。 通过迭代更新粒子的位置和速度,粒子群算法可以逐步逼近最佳解决方案。最终得到的群体最优解即为选址问题的最佳解决方案。 需要注意的是,粒子群算法的效果受到许多因素的影响,例如粒子数目、速度更新公式、停止条件的设置等。为了获得更好的结果,可能需要适当调整算法的参数和初始值,并进行多次实验以找到最优的设置。 此外,对于特定的定点选址问题,也可以根据问题特点进行问题的建模和算法的改进,以提高算法的性能和效果。
2024-06-05 14:24:58 52KB matlab
1
java基于蚁群算法路由选择可视化动态模拟(LW+开题报告+翻译+任务书+外文翻译) java基于蚁群算法路由选择可视化动态模拟(LW+开题报告+翻译+任务书+外文翻译).java基于蚁群算法路由选择可视化动态模拟(LW+开题报告+翻译+任务书+外文翻译). java基于蚁群算法路由选择可视化动态模拟(LW+开题报告+翻译+任务书+外文翻译). java基于蚁群算法路由选择可视化动态模拟(LW+开题报告+翻译+任务书+外文翻译). java基于蚁群算法路由选择可视化动态模拟(LW+开题报告+翻译+任务书+外文翻译). java基于蚁群算法路由选择可视化动态模拟(LW+开题报告+翻译+任务书+外文翻译). java基于蚁群算法路由选择可视化动态模拟(LW+开题报告+翻译+任务书+外文翻译). java基于蚁群算法路由选择可视化动态模拟(LW+开题报告+翻译+任务书+外文翻译). java基于蚁群算法路由选择可视化动态模拟(LW+开题报告+翻译+任务书+外文翻译).
2024-05-26 18:11:25 1.21MB java
1
java基于蚁群算法路由选择可视化动态模拟(论文+开题报告+翻译+任务书+外文翻译)java基于蚁群算法路由选择可视化动态模拟(论文+开题报告+翻译+任务书+外文翻译)java基于蚁群算法路由选择可视化动态模拟(论文+开题报告+翻译+任务书+外文翻译)java基于蚁群算法路由选择可视化动态模拟(论文+开题报告+翻译+任务书+外文翻译)java基于蚁群算法路由选择可视化动态模拟(论文+开题报告+翻译+任务书+外文翻译)java基于蚁群算法路由选择可视化动态模拟(论文+开题报告+翻译+任务书+外文翻译)java基于蚁群算法路由选择可视化动态模拟(论文+开题报告+翻译+任务书+外文翻译)java基于蚁群算法路由选择可视化动态模拟(论文+开题报告+翻译+任务书+外文翻译)java基于蚁群算法路由选择可视化动态模拟(论文+开题报告+翻译+任务书+外文翻译)java基于蚁群算法路由选择可视化动态模拟(论文+开题报告+翻译+任务书+外文翻译)java基于蚁群算法路由选择可视化动态模拟(论文+开题报告+翻译+任务书+外文翻译)java基于蚁群算法路由选择可视化动态模拟(论文+开题报告+翻译+任务书+外
2024-05-26 18:01:46 1.06MB java 毕业设计
1
pso.m是主程序,pso-pid是适应值函数, 粒子群优化PID 粒子群算法,也称粒子群优化算法或鸟群觅食算法(Particle Swarm Optimization)。思想源于对鸟/鱼群捕食行为的研究,模拟鸟集群飞行觅食的行为。 粒子群算法通过设计一种无质量的粒子来模拟鸟群中的鸟,每个粒子有两个属性:位置和速度; 每个粒子在搜索空间中单独的搜寻最优解,通过适应度函数确定适应值来评价当前位置的好坏,并记录最优解。
2024-05-21 16:44:35 250KB
1
运用LOGWARE4.0软件中的“COG”模块对仓库选址进 行精确重心法求解。实验结果如图2所示。实验表明,从25 次迭代以后,运算结果保持不变。因此 ,该仓库的地址为 = 6.298,Y=6.484,运输成本为55 015 057.44美元。 图2 运用精确重心法求解仓库选址问题的结果 4.1.3 粒子群算法求解实例结果 采 用 MATLAB7进 行 算 法 编 程 ,在 Intel Core2 Duo CPU T7100 1.80 GHz的计算机上进行计算。经过多次实验, 最终确定粒子群算法的各项参数 :种群规模 m=25,惯性权重 CO=0.2,学习因子 c,=c,=1.5,迭代次数 gmax=30。 经过一次计算机实验 ,得到的初始种群如图3所示,经过 3O次迭代,种群的平均适应度和最优适应度的变化情况如图4
2024-05-21 13:17:44 245KB 粒子群算法 物流中心选址
1
「18基于遗传算法(粒子群算法、人工鱼群算法等)的投影寻踪模型MATLAB源代码」.pdf「18基于遗传算法(粒子群算法、人工鱼群算法等)的投影寻踪模型MATLAB源代码」.pdf「18基于遗传算法(粒子群算法、人工鱼群算法等)的投影寻踪模型MATLAB源代码」.pdf「18基于遗传算法(粒子群算法、人工鱼群算法等)的投影寻踪模型MATLAB源代码」.pdf「18基于遗传算法(粒子群算法、人工鱼群算法等)的投影寻踪模型MATLAB源代码」.pdf「18基于遗传算法(粒子群算法、人工鱼群算法等)的投影寻踪模型MATLAB源代码」.pdf「18基于遗传算法(粒子群算法、人工鱼群算法等)的投影寻踪模型MATLAB源代码」.pdf「18基于遗传算法(粒子群算法、人工鱼群算法等)的投影寻踪模型MATLAB源代码」.pdf
2024-05-17 14:43:42 240KB
粒子群算法(PSO)优化长短期记忆神经网络的数据回归预测,PSO-LSTM回归预测,多输入单输出模型 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-05-13 10:49:49 41KB 神经网络 lstm
1
基于粒子群算法优化长短期记忆网络(PSO-LSTM)的时间序列预测。 优化参数为学习率,隐藏层节点个数,正则化参数,要求2018b及以上版本,matlab代码。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-05-13 10:49:35 26KB 网络 网络 matlab lstm
1