python实现决策树(CART算法),使用西瓜数据集,参考《机器学习》和统计学习方法实现决策树算法。
2023-05-22 17:30:46 11KB python 机器学习
1
决策树代码实现,采用机器学习库来实现的,用来做学习用
2023-05-17 22:02:01 28KB 机器学习
1
本文介绍了使用C++实现决策树算法的方法,包括多叉树的实现,其中广义表和父指针表两种方法都被提到。此外,还使用了一些常见的C++库,如iostream、string、vector、map、algorithm和cmath。在实现过程中,需要注意输入每行的数据个数不超过5个。
2023-05-15 23:07:22 30KB 决策树算法
1
深蓝学院是专注于前沿科技的教育平台,目前在人工智能、机器人与自动驾驶领域搭建了完善的课程体系,并在积极探索嵌入式、物联网、增强现实领域的教育模式。文件内包含:2022 控制岗位 面试题梳理.pdf;基于学习的决策规划背景知识.pdf;课程介绍及基础资料.pdf;自动驾驶控制与规划第一期第二次答疑问题收集-wuning返回.docx;自动驾驶控制与规划第一期开课仪式.pdf;第六章作业思路讲解-助教高宇辉.pdf
2023-05-15 17:50:56 120.78MB 自动驾驶
1
人工智能西瓜数据集——决策
2023-05-08 09:27:17 802B 人工智能 决策树 数据仓库 算法
1
基于pyknow的基于规则的系统 先决条件 吉特 python 3.5+ jupyter笔记本 下面介绍一些python软件包 pyknow简介 描述 pyknow的主要功能之一是与python 3兼容并使用RETE算法。 pyknow还要用纯python实现。 该软件包的目的是在python中实现CLIPS替代。 目标还在于,这两个工具将尽可能地兼容,以便CLIPS程序员可以轻松地将所有知识转移到该平台。 安装及使用 要在shell pip install pyknow安装此python软件包simpy typ, pip install pyknow不是在您的代码类型中使用该软件包 回购里面有什么 如何设定 首先下载要在您的CLI中运行回购协议的文件 git clone https://github.com/konradbjk/Rule-Based-Engine-pyknow 否转到
2023-05-04 19:43:49 273KB JupyterNotebook
1
通过本次实验,我们进一步监督学习的基本知识,重点理解决策树的常见算法和改进策略,掌握决策树的基本实现方法,考虑决策树的实现细节,实现了基本的决策树模型并使用汽车模型和蘑菇模型对模型进行测试和可视化,测试效果较好。
2023-04-30 21:03:07 1.85MB 决策树、 机器学习
1
使用方法:运行main.py文件即可,或者命令行输入"python main.py"。
1
决策树——ID3算法1.信息熵2.信息增益3.西瓜数据集来构造决策树 用信息增益大小作为决策树属性选择划分的依据是ID3算法构造决策树的核心思想 1.信息熵 在讲信息增益之前就不得不提到信息熵,信息熵定义为: 其中: D —— 样本集合 Pk —— 第k类样本所占比例(k取1,2,…,|y|) 它是度量样本集合纯度最常用的指标,通常En(t)越小样本集合纯度越高。 2.信息增益 信息增益定义为: 其中: a —— 样本中的一个属性 D —— 样本集合 Dv ——实际属性值v对应的样本集合 V —— 属性a对应的实际属性值个数 v —— 某一个实际属性值计数 Ent(D) —— D的信息熵
2023-04-18 12:01:37 198KB id3算法 信息熵 决策树
1
基于视频纹理特征的自适应模式决策算法在HEVC帧内预测中的应用
2023-04-14 12:36:59 459KB 研究论文
1