matlab图片叠加的代码乳腺癌图像分割 使用U-Net CNN架构的三阴性乳腺癌(TNBC)数据集的语义分割 有关主要实现,请参见Main.ipynb 大纲 介绍 三阴性乳腺癌 “三阴性乳腺癌(TNBC)约占所有乳腺癌的10%至15%。这些癌症在非裔美国40岁以下的女性中更常见。 三阴性乳腺癌与其他类型的浸润性乳腺癌的不同之处在于,它们的生长和扩散速度更快,治疗选择有限且预后较差(结果) 。”-美国癌症协会 因此,需要早期癌症检测以向患者提供适当的治疗并降低由于癌症而导致的死亡风险,因为在后期检测这些癌细胞会导致更多的痛苦并增加死亡机会。 癌细胞图像的语义分割可用于简化对乳腺癌的分析和对角化! 就是这样的尝试。 网络 U-Net是用于生物医学图像分割的最新CNN架构。 该体系结构包括捕获上下文的收缩路径和实现精确定位的对称扩展路径。 这是一个完全卷积网络(FCN),因此可以处理任意大小的图像! 除了已经使用了作者使用的“相同”填充而不是“有效”之外,我已经实现了与原始U-Net架构相似的架构。 始终使用“相同”填充使输出分割蒙版与输入的分割蒙版(高度,宽度)相同。 数据集 来自数据集
2021-10-19 17:47:40 5.73MB 系统开源
1
乳腺癌是危害女性生命的一种恶性肿瘤。目前,在乳腺癌治疗方面,新辅助化疗获得了良好的成果,使众多女性恢复了健康。支持向量机在实际应用中有着良好的泛化和学习能力,并在商业、经济以及医疗等领域有所应用。采用决策树分类器和支持向量机分类器,结合乳腺癌新辅助化疗随访记录数据,预测乳腺癌患者新辅助化疗的预后状态,实验结果表明使用支持向量机的效果好于使用决策树的效果,在支持向量机中使用径向基核函数时获得了最高的准确率,达到了84.08%,由此可见,该分类方法可能成为一种乳腺癌新辅助化疗的预后状态的有效预测工具。
2021-10-17 15:55:19 369KB 乳腺癌
1
乳腺癌检测:机器学习算法在威斯康星州诊断数据集上的应用 注意:此存储库已淘汰,不会移植为使用TF2。 但是,您可以以此为参考。 该论文于2018年2月2-4日在越南富国岛举行的第二届机器学习与软计算国际会议(ICMLSC)上发表。 有关该项目的全文,请访问 。 抽象 本文对威斯康星州的六种机器学习(ML)算法进行了比较: ,线性回归,多层感知器(MLP),最近邻(NN)搜索,Softmax回归和支持向量机(SVM)诊断性乳腺癌(WDBC)数据集通过测量其分类测试的准确性以及其敏感性和特异性值。 所述数据集包含特征,这些特征是根据乳腺肿块的FNA测试的数字化图像计算得出的[22]。 为
1
支持向量机分类——基于乳腺组织电阻抗特性的乳腺癌诊断的Matlab程序代码 本资源仅供学习交流,侵删
2021-10-15 22:11:25 408KB matlab
1
多层感知机(MLP)(三层)(UCI乳腺癌数据库)(k折交叉验证)(反向传递)(机器学习,神经网络)
1
乳腺癌 sklearn乳腺癌数据集的机器学习练习
2021-09-25 20:57:56 35KB Python
1
癌症预测 使用机器学习进行乳腺癌预测 使用的算法和精度: 算法精度 Logistic Regression Method 0.982456 Decision Tree Classifier Method 0.941520 Random Forest Classifier Method 0.947368 Support Vector Classifier Method 0.970760
2021-09-16 18:12:54 53KB JupyterNotebook
1
良\恶性乳腺癌肿瘤预测数据集,已经分为训练集和集。
2021-09-16 18:05:45 118B python kaggle
1
字段中包含mean的代表平均值,包含se的代表标准差(standard error),包含worst代表最大值(3个最大值的平均值)。每张图像都计算了相应的特征,得出了这30个特征值。(实际上是10个特征值的3个维度:平均、标准差、最大值)。 这些特征值都保留了4位数字。字段中没有缺失的值。在整个569个患者中,一共有357个是良性,212个是恶性
2021-09-15 13:36:03 123KB 数据集
1
Logistic回归 威斯康星州诊断性乳腺癌(WDBC)数据集的Logistic回归
2021-09-13 20:43:05 111KB JupyterNotebook
1