Java Java学习
2023-12-18 08:58:49 17KB Java
1
1.本项目基于Google的Magenta平台,它采用随机森林分类器来识别图片的情感色彩,接着项目使用递归神经网络(RNN)来生成与图片情感相匹配的音乐,最后通过图形用户界面(GUI)实现可视化结果展示。 2.项目运行环境:包括 Python 环境和Magenta环境。 3.项目包括3个模块:数据预处理、模型构建、模型训练及保存。其中数据集MIDI下载地址为http://midi.midicn.com/,数据集图片在花瓣网收集获取地址为https://huaban.com/boards/60930738/。音乐模型包含欢快和安静两类MIDI文件各100个,图片包含欢快和安静两类各250张,格式为.jpg;模型构建部分包括图片情感分析和复调音乐模型;在定义模型架构和编译之后,使用训练集训练模型,使模型对图片的情感进行分类。 博客:https://blog.csdn.net/qq_31136513/article/details/134014454
2023-12-17 20:49:34 201.68MB python tensorflow 随机森林 人工智能
1
刚从Delphi转C#那会遇到的问题,C#与Delphi的一不同处,几个快捷键。包括如何调用存储过程。
2023-12-17 20:43:39 1KB Delphi转C# 学习笔记 极初级C#
1
本文来自于51cto,文章详细介绍了自然语言处理的基本分类和基本概念深度学习中的NLP等相关知识。本文从两篇论文出发先简要介绍了自然语言处理的基本分类和基本概念,再向读者展示了深度学习中的NLP。这两篇论文都是很好的综述性入门论文,希望详细了解自然语言处理的读者可以进一步阅读这两篇论文。首先第一部分介绍了自然语言处理的基本概念,作者将NLP分为自然语言理解和自然语言生成,并解释了NLP过程的各个层级和应用,这一篇论文很适合读者系统的了解NLP的基本概念。第二描述的是基于深度学习的NLP,该论文首先描述了深度学习中的词表征,即从one-hot编码、词袋模型到词嵌入和word2vec等,我们首先需
2023-12-17 14:45:55 467KB
1
房地产是促进我国经济持续增长的基础性、主导性产业,二手房市场是我国房地产市场不可或缺的组成部分。由于二手房的特殊性,目前市场上实时监测二手房市场房价涨幅的情况较少,影响二手房价的因素错综复杂,价格并非呈传统的线性变化。         本项目利用Python实现某一城市二手房相关信息的爬取,并对爬取的原始数据进行数据清洗,存储到数据库中,通过 flask 搭建后台,分析影响二手房房价的各类因素,并构建递归决策树模型,实现房价预测建模。
2023-12-16 22:08:54 58B 数据挖掘 机器学习 网络爬虫
1
python学习 python学习
2023-12-16 15:38:47 2KB Python
1
本文档是针对吴恩达老师深度学习课程(deeplearning.ai),由黄博士整理。
2023-12-16 15:22:07 36.17MB 深度学习
1
机器学习算法第二版 这是Packt发布的《 的代码库。 流行于数据科学和机器学习的算法 这本书是关于什么的? 机器学习以其强大而快速的大型数据集预测而获得了极大的普及。 但是,强大功能背后的真正力量是涉及大量统计分析的复杂算法,该算法搅动大型数据集并产生实质性见解。 本书涵盖以下激动人心的功能: 研究特征选择和特征工程过程 评估性能和误差权衡以进行线性回归 建立数据模型并使用不同类型的算法了解其工作方式 学习调整支持向量机(SVM)的参数 探索自然语言处理(NLP)和推荐系统的概念 如果您觉得这本书适合您,请立即获取! 说明和导航 所有代码都组织在文件夹中。 例如,Chapter02。 该代码将如下所示: from sklearn.svm import SVC from sklearn.model_selection import cross_val_score svc =
2023-12-15 16:31:18 97KB Python
1
AI大模型是指具有巨大参数量的深度学习模型,通常包含数十亿甚至数万亿个参数。这些模型可以通过学习大量的数据来提高预测能力,从而在自然语言处理、计算机视觉、自主驾驶等领域取得重要突破。根据OpenAI的分类方法,可以将AI模型分为小型模型、中型模型、大型模型和极大型模型,其中大型模型和极大型模型可以被视为AI大模型。 AI大模型的发展历程非常丰富多样,目前已经涌现了许多具有重要影响力的大模型。然而,随着技术的不断进步和研究的推进,我们可以期待更多更强大的AI大模型的涌现。这些模型将继续通过更大的参数量和更深的网络结构来提升性能,同时也需要更强的计算资源、更优秀的算法优化方法以及更多的训练数据来支持。 AI大模型的出现带来了许多优点,例如更精确的预测能力、更好的泛化能力和更广泛的应用范围。然而,AI大模型也存在一些不足之处,比如需要更高的计算资源和训练时间,以及对数据的依赖性较强。此外,由于模型参数量过大,AI大模型也面临着可解释性不足、难以部署和隐私保护等问题
2023-12-15 15:21:22 267KB 人工智能 课程资源
1
学习任务笔记-入门大模型(含源码+项目说明介绍).zip学习任务笔记-入门大模型(含源码+项目说明介绍).zip学习任务笔记-入门大模型(含源码+项目说明介绍).zip学习任务笔记-入门大模型(含源码+项目说明介绍).zip学习任务笔记-入门大模型(含源码+项目说明介绍).zip学习任务笔记-入门大模型(含源码+项目说明介绍).zip学习任务笔记-入门大模型(含源码+项目说明介绍).zip学习任务笔记-入门大模型(含源码+项目说明介绍).zip学习任务笔记-入门大模型(含源码+项目说明介绍).zip学习任务笔记-入门大模型(含源码+项目说明介绍).zip
2023-12-15 15:17:46 1.57MB
1