ML-MT-WebApp 这是我的本科学位课程的主要项目之一。 在这里,我开发了一种疾病预测网络应用程序,该应用程序使用机器学习的概念来预测各种疾病,例如疟疾,肺炎,糖尿病等。 下面是使用的各种模型文件的名称: 癌症模型=模型 糖尿病模型=模型1 心脏模型= model2 肝模型= model4 肾脏模型= model3 疟疾模型= model111.h5 肺炎模型= my_model.h5 用于训练深度学习模型的内核 疟疾核心模型: : 肺炎模型的核心-https: 用于模型开发的各种数据集的详细信息: 癌症:cancer.csv [在资源库中] 糖尿病:dialysis.csv [在资源库中] Heart :heart.csv [在资源库中] 肝脏: : Patient- 肾脏: : 疟疾: : 疟疾 肺炎: : //www.kaggle.c
2023-04-12 00:25:55 52.86MB machine-learning cancer heart diabetes
1
Python轨道交通客流预测系统源码.zip
2023-04-11 22:25:35 30KB python
1
6种算法(线性回归、随机森林、支持向量机、BP神经网络、GRU、LSTM)对电力系统负荷进行预测。通过一个简单的例子。 各种算法(线性回归、随机森林、支持向量机、BP 神经网络、GRU、LSTM)用于电力系统负载预测/电力预测。
2023-04-11 12:09:30 726KB 预测模型 负荷预测 GRU LSTM
1
孕妇的产前体检是围产医学的重要组成部分,产前预测胎儿体重可以为判断胎儿健康发育提供准确的参考.孕妇的多次体检记录在孕周时间上有不均匀时间间隔分布的特点.本研究对不均匀时间间隔的处理提出了LSTM模型的变种——变长时间间隔的LSTM模型(Variable Time Interval LSTM,VTI-LSTM).本研究数据来源于2015~2018年多家妇产科医院的10 473个孕妇的122 462条体检记录.实验比较了传统的公式估算法以及GBDT,MLP,SVR,RNN,LSTM,VTI-LSTM等机器学习方法的胎儿体重预测结果,其中,VTI-LSTM在低体重和巨大儿的预测上取得良好的预测结果.
1
基于POD降阶模型的气动弹性快速预测方法研究,陈刚,李跃明,CFD/CSD耦合数值模拟是解决复杂气动弹性问题精度最高的方法,但同时也是计算效率最低的方法。本文研究了气动弹性系统的时域POD降阶�
2023-04-10 15:33:11 545KB 首发论文
1
牙科氧化锆材料市场现状研究分析与发展前景预测.txt
2023-04-10 11:49:08 20KB 市场调研
1
时间序列是按时间顺序排列的、随时间变化且相互关联的数据序列。分析时间序列的方法构成数据分析的一个重要领域,即时间序列分析。代码
2023-04-09 16:19:48 488KB matlab
1
蛋白质金属结合位点预测 投稿人:田秋,郑子涵,金文浩 生物学意义: 蛋白质及其结构是生命中生物学功能的关键。 通过翻译,核糖体将延长氨基酸序列链,这些氨基酸的物理化学特性及其相互依赖性使一级结构折叠成其复杂的三级结构。 一旦建立了结构,蛋白质结构可能会允许某些离子结合,这可能导致该结构通过构象变化更稳定,或有助于催化。 例如,锌指稳定结构,或血红素基团中离子的必要性,以使血红蛋白转运氧气。 另外,结合位点的序列和结构往往在整个世代中都被保守,并且来自蛋白质数据库(PDB)的大约1/3的蛋白质结构包含金属离子这一事实可能表明它显着干预了蛋白质的行为。 目标 : 我们的兴趣是利用一个突出的神经网络来识别哪些金属与哪个序列结合,以及该金属与哪些氨基酸特异性结合。 我们的目标是将金属分类为准确度为95%的序列。 我们的目标是对哪些氨基酸与F1分数达75%的金属结合进行分类。 概述: [
2023-04-09 12:39:17 316.17MB JupyterNotebook
1
为了能在交通管理中提前采取措施规避可能存在的交通拥挤或堵塞,提出了一种高效可靠的短时交通流预测算法.首先采用BP神经网络与自回归求和滑动平均(ARIMA)两种方法分别建立单项预测子模型,再以BP神经网络作为最优非线性组合模型的逼近器,建立组合预测模型,对单项预测子模型的预测值进行融合,由此得到最终的预测结果.通过MATLAB与SPSS平台对实测交通流量数据进行了仿真分析,结果表明,该种组合预测方法是切实可行的.
2023-04-09 08:17:26 248KB 工程技术 论文
1