python机器学习教程_从零开始掌握Python机器学习:⼗四步 教程 Python 可以说是现在最流⾏的机器学习语⾔,⽽且你也能在⽹上找到⼤量的资源。你现在也在考虑从 Python ⼊门机器学习吗?本教程或 许能帮你成功上⼿,从 0 到 1 掌握 Python 机器学习,⾄于后⾯再从 1 到 100 变成机器学习专家,就要看你⾃⼰的努⼒了。本教程原⽂ 分为两个部分,机器之⼼在本⽂中将其进⾏了整合,原⽂可参阅:7 Steps to Mastering Machine Learning With Python 和 7 More Steps to Mastering Machine Learning With Python。本教程的作者为 KDnuggets 副主编兼数据科学家 Matthew Mayo。 「开始」往往是最难的,尤其是当选择太多的时候,⼀个⼈往往很难下定决定做出选择。本教程的⽬的是帮助⼏乎没有 Python 机器学习背 景的新⼿成长为知识渊博的实践者,⽽且这个过程中仅需要使⽤免费的材料和资源即可。这个⼤纲的主要⽬标是带你了解那些数量繁多的可 ⽤资源。毫⽆疑问,资源确实有很
2023-12-27 19:36:00 261KB python 机器学习 课程资源 文档资料
1
南瓜书旨在对西瓜书里比较难理解的公式加以解析
2023-12-27 19:20:58 1.62MB 机器学习
1
每当提到机器学习,大家总是被其中的各种各样的算法和方法搞晕,觉得无从下手。确实,机器学习的各种套路确实不少,但是如果掌握了正确的路径和方法,其实还是有迹可循的,这里我推荐SAS的LiHui的这篇博客,讲述了如何选择机器学习的各种方法。另外,Scikit-learn也提供了一幅清晰的路线图给大家选择:其实机器学习的基本算法都很简单,下面我们就利用二维数据和交互图形来看看机器学习中的一些基本算法以及它们的原理。(另外向BretVictor致敬,他的Inventingonprinciple深深的影响了我)所有的代码即演示可以在我的Codepen的这个Collection中找到。首先,机器学习最大的分
2023-12-27 19:18:42 700KB 图解机器学习
1
压缩包中包含了机器学习基础的知识,有线性模型、梯度下降、逻辑回归、神经网络、模型选择、决策树等知识。每一部分内容都有概念讲解和公式的推导。
2023-12-27 19:16:51 117.74MB 机器学习 神经网络 课程资源
1
首先我们要对时间序列概念有一个基本的了解时间序列预测大致分为两种一种是单元时间序列预测另一种是多元时间序列预测单元时间序列预测是指只考虑一个时间序列的预测模型。它通常用于预测单一变量的未来值,例如股票价格、销售量等。在单元时间序列预测中,我们需要对历史数据进行分析,确定趋势、季节性和周期性等因素,并使用这些因素来预测未来的值。常见的单元时间序列预测模型有移动平均模型(MA)自回归模型(AR)自回归移动平均模型(ARMA)差分自回归移动平均模型(ARIMA)后期我也会讲一些最新的预测模型包括Informer,TPA-LSTM,ARIMA,XGBOOST,Holt-winter,移动平均法等等一系列关于时间序列预测的模型,包括深度学习和机器学习方向的模型我都会讲,你可以根据需求选取适合你自己的模型进行预测,如果有需要可以+个关注。
2023-12-25 19:58:03 51.93MB 深度学习
1
主要整理单片机的期末复习的题库+解答
2023-12-25 13:03:12 5.15MB 学习笔记
1
数据集:training_set, test-set,traing_set里面存放的是猫狗分类的数据集,test_set里面存放的是猫狗分类的测试集。 datasets.py:数据集的读取,并且会按照7:3的比例将traing_set划分为测试集和验证集 chuli.py:验证数据集读取的正确性 model.py:里面存放的ResNet34的代码 train.py:训练集,并且会drew出训练集和验证集的损失和acc test.py:最终会输出训练好的模型(resnet.pth)对于测试集的acc 该项目非常适合初学深度学习者,可以学习关于数据集
2023-12-24 21:16:14 293.8MB 数据集 resnet34 深度学习实战 猫狗分类
1
MapGIS是中国地质大学开发的通用工具型地理信息系统软件,它是在享有盛誉的地图编辑出版系统的MAPCAD基础上发展起来的,可对空间数据进行采集、存储、检索、分析和图形表示。MAPGIS包括了MAPCAD的全部基本制图功能,可以制作具有出版精度的十分复杂的地形图和地质图。同时,它能对地形数据与各种专业数据进行一体化管理和空间分析查询,从而为多源地学信息的综合分析提供了一个理想的平台。 此资料是基于10.3版本的学习资料,内容详细,深入浅出,适合初学者学习以及有一定经验的使用者参考。
2023-12-24 20:16:38 274.89MB 课程资源
1
深度学习烟叶检测/分割数据集,包含五百六十张不同场景下的烟草叶片图像数据,可用于人工智能(深度学习)的学习和研究
2023-12-23 19:33:41 127.4MB 人工智能 深度学习 数据集 目标检测
1
是用于高光谱遥感影像分类的机器学习脚本,其中使用了MLP算法(Multilayer Perceptron Algorithm)对Salinas数据集进行分类。 Salinas数据集是一个常用的高光谱遥感影像数据集,包含了来自13种不同作物和地物的224个像素。在你的Python脚本中,使用了MLP算法对这些像素进行分类。MLP算法是一种基于神经网络的分类算法,其通过多层神经元对特征进行抽象和表达,从而实现高效的分类。在该算法中,使用了反向传播算法对网络进行训练,以便调整网络中的权重和偏置,从而提高分类的准确性。
1