高光谱图像分类是遥感领域的研究热点之一,是对地观测的重要手段,在地物的精细识别等领域具有重要的应用。使用卷积神经网络(CNN)可以有效地从原始图像中提取高级特征,具有较高的分类精度。但CNN计算量巨大,对硬件要求较高。为了提高模型计算效率,可以在图形处理器(GPU)上进行CNN模型的训练。现有的并行算法,比如GCN(GPU based Cube-CNN),无法充分利用GPU的并行能力,算法加速效果并不理想。为了进一步提升算法效率,提出基于通用矩阵乘法(GEMM)算法的GGCN(GPU based Cube-CNN improved by GEMM)并行加速算法,通过G-PNPE(GEMM based Parallel Neighbor Pixels Extraction)对输入数据和卷积核进行重新组织排列,实现卷积的并行计算,有效地提高了GPU的利用率并进一步提升了算法的训练效率。通过分析在三个数据集上的实验结果发现,改进算法的分类精度与原算法保持一致,而且模型的训练时间缩短了30%左右,表明算法的有效性和优越性。
1