探索岩巷大倾角上山掘进普通综掘机施工技术,并应用于东易煤矿9-4回风斜巷28°上山岩巷掘进工作面。采用EBZ160悬臂式综掘机破岩,截割下的岩渣铺垫在巷道底板,建立坡度15°的掘进施工平台,综掘机在其额定爬坡能力范围内工作,实现岩巷大倾角上山综掘机掘进。实践证明:该技术方案突破了综掘机最大爬坡能力18°的制约,减轻了工人劳动强度,降低掘进成本,提高了掘进单进水平,实现了安全快速掘进。
2026-01-13 17:36:34 83KB 行业研究
1
针对大角度斜井掘进施工过程中光爆成型质量偏低的现象,通过对井筒在400 m处的施工情况分析,制定了一系列的对策,有针对性的解决钻眼质量低、看线、轮尺不准确不按轮尺图点眼、周边眼布置不合理和周边眼装药量取定不合理等情况,结果表明:可节省大量施工材料,降低成本;光爆成型质量的提高,也节约了巷道成型和爆破所必须的人工。
2026-01-13 17:08:43 247KB 行业研究
1
网络安全技术与应用课件(完整版).ppt
2026-01-13 16:54:23 10.86MB
1
网络安全技术与应用课件.ppt
2026-01-13 16:53:50 10.86MB
1
大倾角岩巷下山掘进一直是煤矿掘进施工的难题,富山煤业公司在主斜井延深开拓掘进中,通过对下山掘进中影响进尺水平的下山掘进面积水难排、下山扒装和提升运输困难、下山掘进面难以平行作业等问题的分析研究,分别采用更换新设备、重组工序、优化工艺等方法,实现能力综合配套,单月进尺大幅提高。
1
本文详细介绍了反制无人机的核心架构、主流技术分类、典型应用场景及未来发展趋势。核心架构包括侦测识别层、决策控制中枢和反制执行单元,采用多传感器融合技术和AI分析提升目标识别精度。主流技术分为软杀伤(如电磁压制、导航欺骗)和硬摧毁手段(如动能拦截、定向能武器)。应用场景涵盖军事防御、公共安全和关键基础设施保护。未来技术将向智能化、多手段协同和小型化方向发展,同时需遵守相关法律与伦理约束。 反制无人机技术是当今世界上用于防御和控制无人机威胁的重要手段,它包括了诸多技术手段,既有软杀伤技术,如电磁压制、导航欺骗,也有硬摧毁手段,如动能拦截、定向能武器。而这些技术的实现依赖于一套复杂的系统架构,其中侦测识别层是基础,它利用多传感器融合技术,能够对无人机进行有效识别和跟踪。决策控制中枢则负责处理来自侦测识别层的信息,制定相应的反制策略。而反制执行单元则是将决策转化为实际行动,执行对无人机的干扰或拦截。 在实际应用中,反制无人机技术主要应用在军事防御、公共安全和关键基础设施保护等领域。例如在军事领域,防止敌对势力利用无人机进行侦察或攻击;在公共安全领域,防止无人机非法侵入禁飞区,威胁公共安全;在关键基础设施保护方面,保证机场、核电站等重要设施不受无人机威胁。 未来,随着无人机技术的不断进步和无人机应用的普及,反制无人机技术也将不断升级和优化。智能化是其中的一个主要趋势,未来的系统将更加依赖人工智能技术,以实现更加高效和准确的决策。同时,多手段协同作战将成为主流,通过对各种反制手段的整合,形成一套全方位的防御体系。小型化也是一个发展方向,便于设备的部署和移动。 然而,在反制无人机技术的发展过程中,法律和伦理的约束不容忽视。如何在保护社会安全和保护个人隐私之间找到平衡点,如何避免技术误用或滥用,这些都是未来发展中必须面对的问题。 反制无人机技术是一个多学科交叉融合的领域,涉及电子工程、计算机科学、人工智能、法律伦理等多个方面。这些技术手段和系统架构的综合运用,构成了当今反制无人机技术的核心内容。随着技术的不断进步,这一领域将继续展现出巨大的发展潜力和应用前景。
2026-01-12 23:06:37 7KB 软件开发 源码
1
《COMSOL超表面模拟技术:结构变化透射谱与偏振变换研究——用MATLAB实现Qbic多级子分解及模式电场磁场图解》,comsol 超表面复现Qbic,包含内容:结构变化透射谱,偏振变化透射谱,法诺曲线拟合用matlab代码直接出Q值,bic位置Q因子计算,多级子分解,电场磁场模式图带矢量箭头,所见即所得,内有视屏指导,可分步骤。 编号1 ,comsol;超表面复现;Qbic;结构变化透射谱;偏振变化透射谱;法诺曲线拟合;Q值计算;BIC位置Q因子;多级子分解;电场磁场模式图;视频指导;分步骤操作,"Comsol超表面复现Qbic:结构透射谱与偏振变化分析"
2026-01-12 19:00:37 726KB 柔性数组
1
题目:脉搏测试仪的设计 要求: 1.设计一个脉搏计,要求实现在 15s 内测量 1min 的脉搏数,并且 显示其数字; 2.用传感器将脉搏的跳动转换为电压信号,传感器输出电压一般 为几十毫伏; 3.正常人脉搏数为 60—80 次/min,婴儿为 90 一 100 次/min, 老人为 100—l 50 次/min。 4.自行设计所需的直流电源。 脉搏测试仪的设计属于数字电子技术领域,它要求设计者具备电路设计、信号处理和数字显示等相关知识。根据给定的文件信息,设计脉搏测试仪时需要考虑以下几点: 脉搏测试仪的核心功能是在15秒内测量一分钟的脉搏次数,并以数字形式显示结果。这一过程涉及到对时间的精确控制以及对脉搏信号的有效采样。设计者需要了解如何使用定时器或计数器来实现这一功能,并且确保在短时间内采集到足够的数据点来准确计算一分钟的脉搏次数。 脉搏信号的采集是通过传感器将脉搏的机械跳动转换成电压信号完成的。通常情况下,传感器输出的电压信号非常微弱,仅几十毫伏,因此设计者需要设计一个放大电路来增强这个信号,以便于后续处理。在放大过程中,设计者需要注意信号的噪声抑制,确保信号的清晰度,以免影响测量结果的准确性。 再者,对于正常成人、婴儿和老人的脉搏频率,设计者需要在设计中考虑到不同人群的脉搏频率范围,确保测试仪能够覆盖这些正常的生理变化。这意味着脉搏测试仪的设计需要具有一定的灵活性,能够适应不同脉搏频率的测量需求。 设计脉搏测试仪还要求自行设计所需的直流电源。这涉及到电源电路的设计,包括稳压、滤波等环节,以确保测试仪能够稳定地工作,避免电源波动对测量结果造成影响。 整个设计过程中,设计者需要综合运用数字电子技术的相关知识,包括数字电路设计、模拟电路设计、传感器应用、信号处理技术和电源设计技术。此外,还应该考虑到用户界面的设计,使得测试仪的操作简单直观,易于普通用户理解和使用。 在制作文档时,设计者应该详细记录设计方案的每一个环节,包括设计思路、电路图、元件清单、测试结果等,以便于后续的制作、测试和改进。 在进行脉搏测试仪设计时,还可以参考现有的相关技术和产品,了解它们的设计原理和实现方式,从而为自己的设计提供参考和借鉴。同时,还需要关注医学方面的知识,确保测试仪的测量结果准确反映人体脉搏的真实情况,避免医疗误差。 脉搏测试仪的设计是一个综合了电子技术、信号处理和用户体验的项目,设计者需要在遵循技术规范的同时,兼顾到产品的实用性和用户的便利性。通过科学严谨的设计过程,可以制造出既准确又易于操作的脉搏测试仪器。
2026-01-12 15:50:43 903KB 数字电子技术
1
英飞凌芯片汽车电子网络安全HSM技术资料分享与项目开发:涵盖RSA、AES等算法及安全服务支持,技术文档分享,汽车电子网络安全(英飞凌芯片)HSM技术资料分享与项目实践:RSA、AES算法及签名验证等安全功能详解,汽车电子网络安全(信息安全)HSM技术资料分享及项目开发。 芯片型号:英飞凌 支持算法:RSA,AES,签名生成及验证,CMAC生成及验证等 支持功能:安全服务,SecureBoot,HsmBootloader 技术文档:常用加密算法介绍ppt;标准SHE介绍ppt;HSM刷写ppt ,汽车电子网络安全; HSM技术; 英飞凌芯片型号; RSA; AES; 签名生成及验证; CMAC生成及验证; 安全服务; SecureBoot; HsmBootloader; 技术文档; 常用加密算法介绍ppt; 标准SHE介绍ppt; HSM刷写ppt。,英飞凌HSM技术:汽车电子网络安全与项目开发全解析
2026-01-12 12:29:56 3.54MB xhtml
1
内容概要:本文档详细介绍了Aumovio公司推出的第六代长距离毫米波雷达ARS620的技术规格、安装要求、电气参数及通信协议。ARS620是一款支持76-77GHz频段的雷达传感器,具备物体检测(OD)和雷达检测图像(RDI)功能,适用于自动驾驶辅助系统。其主要性能包括最大探测距离达280米,水平视场角±60°,垂直视场角±20°,并支持自动校准与遮挡检测。文档还列出了电源管理、CAN通信接口配置、所需车辆输入信号以及雷达输出的目标分类与运动状态信息。 适用人群:从事汽车电子系统开发、ADAS(高级驾驶辅助系统)集成、车载传感器应用的工程师和技术人员,尤其是涉及雷达选型、整车集成与调试的专业人员。 使用场景及目标:用于智能网联汽车中前向雷达系统的开发与部署,支持ACC自适应巡航、AEB紧急制动、FCW前方碰撞预警等功能的设计与验证;帮助开发团队完成雷达的硬件连接、信号匹配、标定调试及故障诊断。 其他说明:文档强调了安装时二次表面材料的选择标准与间距要求(建议≥10mm),并提供了详细的CAN报文结构与周期性/事件触发机制,便于系统集成。同时指出若输入信号无法满足条件,需通过邮件联系技术支持。
2026-01-11 23:37:38 1.1MB 毫米波雷达
1