YOLOv5|YOLOv7|YOLOv8改各种IoU损失函数:YOLOv8涨点Trick,改进添加SIoU损失函数、EIoU损失函数、GIoU损失函数、α-IoU损失函数-CSDN博客.mhtml
2024-01-15 16:19:33 3.33MB
1
深度学习模型现在很火,应用的领域也是各方各面。在序列预测方面,当属LSTM模型的应用最广。我基于matlab编写了用LSTM模型实现多步预测时间序列的程序代码。序列数据是我随机生成的,如果有自己的数据,就可以自己简单改一下代码,读取txt或excel都可以。注意读取后的序列必须命名为行向量。代码最后还提供了误差分析部分,展示了绝对误差、MAE、RMSE、MAPE共4个误差指标,可供参考。代码基于matlab2021版编写,适用于2018版之后的所有版本。
2024-01-12 14:18:10 3KB matlab lstm 文档资料 开发语言
Pytorch实现基于LSTM的情感分析的代码和数据集
2024-01-12 14:03:45 1.23MB pytorch
1
pytorch采用LSTM实现文本翻译,序列到序列学习Seq2Seq,数据集为Multi30k,从德语(de)翻译到英语(en),有编码层和解码层。
2024-01-12 13:15:19 51.87MB pytorch pytorch lstm Seq2Seq
1
目标:根据历史数据,预测当天股票最高价 模块导入 import pandas as pd import matplotlib.pyplot as plt import datetime import torch import torch.nn as nn import numpy as np from torch.utils.data import Dataset, DataLoader 数据读取 原始数据获取 预测股票价格的简单小程序,LSTM 实现,基于 Pytorch。数据预处理时,将训练数据和验证数据进行了统一处理,发生了数据泄露,因此仅供娱乐,并不实用。
2023-12-24 15:41:12 623KB Pytorch
1
本文档详细讲解了LSTM的内部机理,调理清楚,通俗易懂,适合深度学习爱好者作为进阶材料阅读.
2023-12-21 22:51:51 1.74MB LSTM
1
采用LSTM神经网络,基于时间线可以实现数据的预测,包括股票价格随时间的变化预测、多地天气的温湿度数据的预测。本资源已经跑通,用户替换掉数据集data.csv等文件即可,简单易上手。
2023-12-12 10:00:33 1.02MB lstm 神经网络 价格预测 预测算法
1
基于卷积-长短期记忆网络加注意力机制(CNN-LSTM-Attention)的时间序列预测程序,预测精度很高。 可用于做风电功率预测,电力负荷预测等等 标记注释清楚,可直接换数据运行。 代码实现训练与测试精度分析。
2023-12-11 12:30:03 285KB 网络 网络 lstm
1
基于麻雀算法优化深度置信网络(SSA-DBN)的分类预测,优化参数为隐藏层节点数目,迭代次数,学习率。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2023-12-07 13:52:07 82KB 网络 网络
1
基于注意力机制attention结合长短期记忆网络LSTM时间序列预测,LSTM-Attention时间序列预测,单输入单输出模型。 运行环境MATLAB版本为2020b及其以上。 评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高,方便学习和替换数据。
2023-12-01 23:39:28 26KB 网络 网络 matlab lstm
1