内容概要:本文详细介绍了基于STM32F4和AD7124的高精度温度测量方案,涵盖硬件设计和软件实现两方面。硬件部分重点讲解了AD7124作为24位ADC的应用,包括其与STM32的连接方式、热电偶信号接入方法以及独特的三线制Pt100冷端补偿电路设计。软件部分展示了AD7124的初始化配置、滤波器设置、热电偶信号处理(如多项式拟合)、冷端补偿算法(如查表法+线性插值)等关键技术细节。此外,还讨论了一些常见的注意事项,如基准电压稳定性、电磁干扰防护措施等。 适合人群:从事嵌入式系统开发的技术人员,尤其是对工业自动化、精密仪器制造等领域感兴趣的工程师。 使用场景及目标:适用于需要精确测量温度变化的工业应用场景,如化工生产监控、冶金加工过程控制等。主要目标是提供一套完整的解决方案,帮助开发者理解和应用先进的温度传感技术,提高系统的可靠性和准确性。 其他说明:文中提供了丰富的代码片段和原理图,便于读者深入理解并进行实际操作。同时强调了多个实用技巧,如双恒流源比例法消除导线电阻误差、SINC4滤波器的选择等,有助于解决实际工程项目中遇到的具体问题。
2025-05-14 17:14:41 3.23MB
1
“基于AD7124的Pt100冷端补偿及热电偶测温方案,涵盖原理图和STM32源码移植”,热电偶测温方案解析:AD7124驱动源码支持多种类型热电偶及Pt100冷端补偿与工程原理图详解。,热电偶测温方案 AD7124+Pt100冷端补偿 包含Pt100、NTC热敏、热电偶处理驱动源码 支持热电偶类型T、J、E、N、K、B、R、S 8种类型 Pt100测温方案 三线制 四线制 三线制双恒流源比例法,消除导线电阻误差 包含原理图和STM32+AD7124+热电偶方案+Pt100冷端补偿解析工程源码 如果用于别的MCU可以参考此代码移植 资料很全 ,Pt100测温方案;AD7124;冷端补偿;热电偶处理驱动源码;导线电阻误差消除;T/J/E/N/K/B/R/S类型热电偶支持。,热电偶与Pt100测温方案:多类型支持与冷端补偿解析工程源码
2025-05-14 17:01:20 4.16MB 柔性数组
1
利用Radon—Wigner变换与Wigner—Hough估计进行线性调频信号参数的信号参数估计与雷达信号处理中的速度补偿.pdf
2025-05-10 16:09:41 54KB
1
内容概要:本文详细介绍了如何在SMIC 180nm工艺下设计一个带隙基准电路,并加入二阶温度补偿以提高电压稳定性。首先阐述了带隙基准电路的基本原理,即利用双极型晶体管的基极-发射极电压(Vbe)和热电压(Vt)的不同温度系数特性,通过适当的电阻比例叠加,生成一个与温度无关的稳定电压。接着,设计了启动电路以确保电路正常启动,并给出了具体的Verilog代码实现。随后,深入探讨了二阶温度补偿的方法,通过引入额外的电路来补偿高阶温度项,从而进一步减少电压漂移。最后,进行了多种仿真实验,包括稳定性分析、直流分析和瞬态分析,验证了电路的功能和性能。 适合人群:从事模拟集成电路设计的研究人员和技术人员,尤其是对带隙基准电路和温度补偿感兴趣的工程师。 使用场景及目标:适用于需要精确电压基准的应用场合,如精密测量仪器、传感器接口电路等。目标是设计出能够在较宽温度范围内保持高度稳定的电压基准电路。 其他说明:文中提供了详细的电路设计步骤和仿真代码,有助于读者理解和复现实验结果。同时,强调了实际应用中需要注意的问题,如工艺偏差和电源噪声的影响。
2025-05-09 14:17:20 1.19MB
1
Sufficient phase margin is required to prevent oscillations. A phase margin of 45 degrees or greater is the design goal. A gain margin of –6 dB is the minimum, while –10 dB is considered good. Although higher crossovers are generally preferable, there are practical limitations. The rule of thumb is 环路补偿在开关模式电源转换器中的应用 开关模式电源转换器(SMPS)的核心功能是维持输出电压的稳定,无论负载变化还是输入线路电压波动。为了实现这一目标,SMPS利用反馈环路进行调节。如果误差放大器采用线性反馈,那么环路通常需要补偿。本文将深入探讨线性反馈环路的工作原理,定义关键概念,如极点、零点以及功率级特性,并介绍不同类型的误差放大器。 极点和零点是理解控制环路动态行为的关键。极点决定了系统响应的速度和稳定性,而零点则影响环路对输入变化的响应。功率级的特性包括开关频率、效率和转换时间,这些都会影响环路补偿的设计。 误差放大器在反馈环路中起着核心作用,它比较输出电压与设定值,产生的误差信号被用来调整开关电源的工作状态。隔离反馈通常用于高压或隔离应用,其中光耦合器用于传递信号,确保安全并保持电气隔离。 补偿方法分为电压模式控制和电流模式控制。电压模式控制关注输出电压的稳定,而电流模式控制更侧重于电流限制和瞬态响应。固定频率连续导通模式(CCM)是最常见的工作模式,但也存在断续导通模式(DCM)。DCM和CCM在反馈环路中的表现不同,因此补偿设计需考虑这两种模式的影响。 实际应用中,SMPS设计者必须考虑器件的限制,如开关管的开关速度、电容和电感的寄生效应、以及误差放大器的带宽和增益裕量。通常,45度以上的相位裕量可防止振荡,而-6 dB至-10 dB的增益裕量被认为是良好的设计目标。 在选择补偿网络时,设计师应考虑拓扑结构、反馈方式以及期望的环路性能。例如,降压(Buck)、升压(Boost)和升降压(Buck-Boost)转换器各有其独特的补偿挑战。此外,环路补偿网络可能包含电容、电阻和电感元件,它们的选择和布局直接影响系统的稳定性和性能。 本论文旨在为设计者提供一个实用的参考指南,帮助他们快速找到不同拓扑结构和反馈模式下的补偿解决方案。通过深入理解这些基本概念和技术,设计师能够更有效地应对各种开关模式电源转换器设计中的挑战,从而优化系统的性能和稳定性。
2025-05-03 22:21:23 4.85MB
1
(6) 静止无功补偿器数据 静止无功补偿器数据修改界面如图 4-6 所示。其中可修改的内容包括: 静补类型: 1:可控硅(Thyristor)静补 2:自饱和式(Self-Saturate)静补 参数组号:该静止无功补偿器参数组编号,具体参数需在“参数库”中填写,可 参考《PSASP7.0——图模平台用户手册》静止无功补偿器数据部分。 固定电容器容抗值:静止无功补偿器固定电容器部分容抗,单位为标幺值(p.u.)
2025-05-03 14:02:56 2.41MB psasp7.0手册
1
无功功率补偿容量的计算方法是电力系统中一个至关重要的技术问题,对于提高电网效率、稳定电压水平以及降低能耗有着显著作用。无功功率在交流电力系统中扮演着维持电磁场稳定的重要角色,但并不直接参与电能的做功过程。因此,无功功率的流动会导致线路损耗和电压质量下降,而无功功率补偿则是解决这些问题的有效手段。 无功补偿的目的是通过向系统提供或吸收无功功率,使得系统中的无功电流得到平衡,从而改善功率因数,降低线路损耗,提升电能质量。补偿方法主要包括并联电容器补偿、静止无功发生器(SVG)补偿、同步调相机补偿等。其中,电容器是最常见的补偿设备,因其成本低、安装简便而被广泛应用。 计算无功补偿容量的方法通常涉及以下几个步骤: 1. **确定负荷性质**:首先需要了解负荷的性质,无功功率需求与负荷的类型和运行状态密切相关。例如,感应电机、变压器等设备在运行时会消耗大量无功功率。 2. **计算基态无功需求**:根据负荷的额定功率和其功率因数,可以计算出负荷在满载时的无功功率需求。公式为:Q = S × (1 - cosφ),其中Q是无功功率,S是视在功率,cosφ是功率因数。 3. **考虑负荷变化**:实际运行中,负荷可能会有波动,因此需要考虑最大负荷和最小负荷时的无功功率需求,以确保补偿设备在任何工况下都能有效工作。 4. **设定目标功率因数**:为了达到理想的功率因数,通常会设定一个目标值,如0.95或更高。然后计算达到这个目标所需的无功功率补偿量。 5. **计算补偿容量**:根据目标功率因数计算所需补偿的无功功率,然后除以电容器的无功功率因数(一般在0.95左右),得到所需的电容器组容量。 6. **考虑系统裕量**:为了应对可能的负荷增长和设备老化,通常会额外增加10%至20%的补偿容量。 实际应用中,还需要结合电网的具体条件、设备的可用性及经济性等因素进行综合考虑。例如,如果采用分组投切策略,还需要考虑每组电容器的容量分配以实现平滑的无功功率调节。 通过以上分析,我们可以看出,无功功率补偿容量的计算是一个涉及多因素的工程问题,需要根据实际电力系统的具体情况来确定。《无功功率补偿容量计算方法.pdf》这份文档很可能详尽地介绍了这些计算方法和实际应用案例,对于理解和实施无功补偿具有很高的参考价值。
2025-04-26 00:58:39 1.16MB 无功补偿
1
第五章 总结与展望 1.总结: 本文对自适应滤波器的 FPGA 实现研究,主要涉及两方面的内容,一方面结合 FPGA 设计数字信号系统具有可并行调用运算的特点,设计实现了可以独立调用功能模块的自 适应横向滤波器的结构,并利用该结构的设计方法,设计了 16 阶的自适应横向滤波器, 这种设计方法具有灵活,可以根据实际情况选择资源以及处理速度的特点。另一方面针 对传统自适应陷波器仅能对已知频率的单频噪声进行滤除,采用将采集到的噪声信号进 行 FFT 变换并提取几个特征频率值并将频率值作为自适应陷波器的期望信号频率,周 期性地提取并改变噪声特征频率值,并通过自适应算法,将变动的主要噪声频率值滤除, 最终提出该滤波器的 FPGA 结构设计。本文完成了以下设计内容。 (1)充分了解本文设计自适应滤波器所需的知识的基础上,采用 Matlab 的仿真功 能,对自适应横向滤波器以及符号算法的自适应陷波滤波器进行功能仿真,了解自适应 滤波器的滤波特点以及运算参数,以及滤波器阶数对滤波器收敛性能做了一定的研究, 为之后的滤波器设计奠定了理论基础。 (2)结合自适应横向滤波器可以独立的分为滤波部分,权值更新部分以及误差求 取部分,提出一种将各部分模块化设计,最后再调用组合的自适应横向滤波器设计方法, 最终利用该方法设计出了 16 阶的自适应横向滤波器,并对全串行,并行设计方法进行 了比较研究。 (3)对如何进行噪声特征频率提取的问题,提出了一种首先进行 FFT 变换之后对 变换值进行最大值提取求取对应频率值的方法,介绍了该方法的原理,并编写了 verilog HDL 程序,采用 Modelsim 进行了行为仿真。仿真结果说明能正确的提取出对应频率值。 (4)结合提取出来的噪声特征频率,设计陷波频率可变的自适应陷波滤波器,给出 了部分设计的 verilog HDL 设计程序,并进行了行为仿真测试。仿真结果说明,功能设 计是正确的。 2.展望 针对 FPGA 的自适应陷波滤波器设计,本文进行了 Matlab 仿真以及 verilog HDL 程 序编写并使用 Modelsim 仿真功能证明设计的正确性,但是由于个人理论知识以及研究 时间有限,在以下几个方面有待改进。 万方数据
2025-04-24 11:32:00 4.04MB fpga 自适应滤波器
1
有源滤波器(APF)的工作原理与指令电流检测及补偿电流生成 通过谐波检测与控制,实现指定次数谐波的消除,采用ipiq法、pq法等多种检测手段及重复、无差、PI滞环、三角等控制方式。,有源滤波器(APF)主要由两大部分构成:指令电流检测部分和补偿电流生成部分。 主要工作原理是检测补偿点处电压和电流,通过谐波检测手段,将负载电流分为谐波电流和基波电流,然后将谐波电流反极性作为补偿电流生成部分的控制指令电流,以抵消电路中的谐波成分。 通过控制,APF还可以消除指定次数的谐波。 谐波检测ipiq法,pq法! 控制:重复 无差 PI 滞环 三角! 任意组合~ ,有源滤波器(APF);构成部分:指令电流检测、补偿电流生成;工作原理:谐波检测、反极性控制、消除谐波;关键技术:谐波检测IPIQ法/PQ法;控制方法:重复控制、无差控制、PI控制、滞环控制、三角控制。,有源滤波器(APF)构成与工作原理简介
2025-04-23 09:53:58 110KB
1
内容概要:本文详细介绍了100A有源电力滤波器(APF)在MATLAB V2011中的仿真实现,涵盖全阶补偿和选阶补偿两种模式。主要内容包括基于LCL滤波器的I型三电平拓扑仿真模型的构建,三相四线制系统的软件锁相环实现,谐波指令的软件提取方法,以及重复控制算法和SPWM调制策略的应用。此外,还探讨了直流电压和中点电位的稳定控制方法。通过这些技术手段,最终实现了对谐波的有效补偿,显著降低了总谐波失真(THD)。 适合人群:从事电力系统研究和技术开发的专业人士,尤其是对有源电力滤波器及其仿真感兴趣的工程师和研究人员。 使用场景及目标:适用于需要解决电力系统中谐波污染问题的实际工程项目。主要目标是提高电能质量,降低谐波失真,优化APF的工作效率。同时,也为进一步的研究提供了一个完整的仿真平台。 其他说明:文中提供的代码片段和理论分析有助于理解和实现APF的关键技术和算法。建议读者在实践中结合具体应用场景进行参数调整和优化。
2025-04-19 10:25:44 108KB
1