学生成绩信息包括:学期,学号,班别,姓名,四门课程成绩(语文、数学、英语和计算机)等。 主要功能: (1) 能按学期、按班级完成对学生成绩的录入、修改 (2) 能按班级统计学生的成绩,求学生的总分及平均分 (3) 能查询学生成绩,不及格科目及学生名单 (4) 能按班级输出学生的成绩单 要求:使用二进制文件方式存储数据,系统以菜单方式工作
2023-02-08 12:33:16 38KB 学生成绩信息
1
针对齿轮箱升降速过程中振动信号非平稳的特点,将阶次跟踪、角域平均和连续小波变换相结合,提出了基于角域平均和连续小波变换的齿轮箱故障诊断方法。首先对齿轮箱升降速瞬态信号进行时域同步采样,再对时域信号进行等角度重采样,转化为角域平稳信号,然后对角域信号进行角域平均,以消除干扰噪声的影响,最后对角域平均信号进行连续小波变换,根据小波幅值图和相位图,就可提取齿轮的故障特征。通过对齿轮齿根裂纹故障实验信号的分析,表明该方法能有效地诊断齿轮的故障状态。
2023-02-07 10:29:32 856KB 工程技术 论文
1
提出了一种电力系统多区域分布式状态估计方法,各区域估计器利用其数据采集与监视控制系统提供的量测数据进行本地状态估计,并通过平均一致性算法获取全局信息进行系统级状态估计。建立了基于拉格朗日乘子法的状态估计模型并设计了基于一致性的全局信息交换协议,给出了多区域分布式状态估计算法的实现流程。通过IEEE 14节点和118节点系统中的仿真算例验证了所提方法的正确性和有效性,并就估计精度和计算效率与现有状态估计方法进行了比较。仿真结果表明分布式状态估计方法可有效提高集中式状态估计系统的计算效率及可靠性,适用于结构更加复杂、量测数据体量更大电网的状态估计。
1
市场趋势预测 这是一个构建知识图谱课程的项目。 该项目利用历史股票价格,并整合了来自客户的社交媒体,以预测道琼斯工业平均指数(DJIA)的市场趋势。 数据周期:2016年8月1日至2017年10月31日。DJIA数据范围:2016年8月1日至2017年11月30日。数据来源:Business Insider(记录号:2,017),Reddit finance(4,383),facebook(11,528) ),雅虎财经(10,478),Twitter(24,271)结构数据:Facebook,Twritter。 预测结果 请。 请引用。 T+1 Prediction
2023-02-02 10:51:24 157.67MB python facebook twitter jupyter
1
Prony算法能根据实测数据辨识系统的相关特性参数,有助于分析系统低频振荡。针对传统Prony算法只能分析部分数据且对噪声敏感的问题,提出一种Prony滑动平均窗算法,分窗口对数据进行分析,不仅能充分利用数据,而且采用求和取平均的方法在一定程度上能削弱噪声,即使在信噪比非常小的情况下仍能得到准确的辨识结果。基于PSASP软件的仿真分析验证了Prony滑动平均窗算法所得结果的准确性。
1
典型K平均算法中的聚类数k必须是事先给定的确定值,然而实际中很难精确确定,因而无法解决该核算法的实际问题。为此,提出距离代价函数作为最佳聚类数的有效性检验函数,建立了相应的数学模型,并据此提出了一种改进的k值优化算法。实验证明,与传统基于平均值方法实现数据聚类相比,用改进K值优化算法有效提高数据聚类效果。
2023-01-15 01:23:59 568KB 算法/平均聚类算法 空间数据挖掘
1
噪声特性对多次采样累加平均技术的影响从理论分析,实例仿真两个方面验证了通过多次采样累加平均技术可以降低噪声
2023-01-11 19:37:48 323KB 噪声特性
1
针对已有神经网络功放建模的建模精度不高,易陷入局部极值等问题,提出一种新的改进并行粒子群算法(Improved Parallel Particle Swarm Optimization,IPPSO)。该算法在并行粒子群算法的基础上引入自适应变异操作,防止陷入局部最优;在微粒的速度项中加入整体微粒群的全局最优位置,动态调节学习因子与线性递减惯性权重,加快微粒收敛。将该改进算法用于优化RBF神经网络参数,并用优化的网络对非线性功放进行建模仿真。结果表明,该算法能有效减小建模误差,且均方根误差提高19.08%,进一步提高了神经网络功放建模精度。
1
matlab开发-基于模糊控制器计算平均标记分数。通过考虑对特定科目的重要性来计算一个人的平均分数
2023-01-06 20:46:59 14KB 安装、授权和激活
1
该子系统模块使用移动平均算法根据 5 个过去的输入预测 4 个未来输出。
2023-01-06 14:21:43 10KB matlab
1