针对SINS/GPS组合导航中量测噪声统计特性不准确引起卡尔曼滤波精度下降的问题,提出基于变分贝叶斯自适应无迹卡尔曼滤波(VB-UKF)的非线性融合方法。分析了线性的变分贝叶斯自适应卡尔曼滤波(VB-KF)算法的原理与性能,针对其仅适用于线性系统的问题,将VB-KF与UKF结合导出了非线性的VB-UKF算法。该算法可对系统状态和时变的量测噪声方差进行同步非线性估计,且与传统的UKF算法具有统一的形式。导航仿真结果表明:VB-UKF对于突变或慢变的量测噪声方差均能实时跟踪,较常规UKF算法可有效降低噪声统计
2021-11-14 16:28:47
904KB
自然科学
论文
1