为获得更为优越的露天矿山境界,构建了集经济时间序列预测、矿岩时间属性赋值和动态经济指标计算为一体的境界全动态优化方法。金属价格是矿山境界优化过程中最重要的因素之一,以金属价格历史数据为平台,通过创建合适时间序列模型,对未来价格做出预测,以预测结果为基础,运用L-G图论法生成系列境界方案,根据矿山实际情况编排进度计划,实现矿岩块参数赋值,将预测结果代入到矿岩块体模型中,计算境界净现值(NPV),经多方案比较确定最优境界。以某铜矿山为例,通过对近50 a伦敦金属交易所(LME)铜精矿季度平均结算价格分析处理,建立了自回归求和移动平均模型(ARIMA),实现了未来15 a铜价预测,最终确定了矿山经济最优境界。建立于金属价格预测基础上的境界动态优化方法所得方案NPV更接近生产实际,其优化结果可更好为矿山设计及未来生产提供基础支撑。
1
微电网是一种分布式能源系统,它能够在与主电网连接或处于孤岛模式下独立运行。在孤岛模式下,微电网的调度优化问题变得尤为重要,因为需要确保系统的稳定性和经济性。本资料主要探讨了如何利用遗传算法来解决孤岛型微电网的成本最低调度优化问题,并提供了MATLAB代码作为辅助理解。 遗传算法是一种模拟自然选择和遗传机制的全局优化方法,它通过模拟生物进化过程中的“适者生存”原则,逐步改进解空间中的个体,从而逼近问题的最优解。在微电网调度优化中,遗传算法可以用于寻找电力系统中各个能源设备的最佳运行策略,包括发电机、储能装置和负荷的调度,以达到最小化运营成本的目标。 在微电网中,多种能源如太阳能、风能、柴油发电机等并存,它们的出力特性各异,调度时需要考虑其不确定性、波动性和非线性。遗传算法可以有效地处理这些复杂因素,通过编码、初始化、交叉、变异和选择等步骤来搜索最优解决方案。编码通常将微电网中的设备状态和调度决策转化为适合遗传操作的数字串;初始化阶段生成初始种群;交叉和变异操作则保证了种群的多样性,避免过早收敛;选择过程则是根据适应度函数(在此案例中可能是总成本)淘汰劣质个体,保留优良基因。 资料中的MATLAB代码实现了上述遗传算法的全过程,并且针对孤岛型微电网进行了定制化设计。代码可能包含了以下部分:数据输入模块,用于定义微电网的设备参数和运行约束;目标函数定义,计算运行成本;遗传算法的核心实现,包括种群生成、适应度评估、选择、交叉、变异等操作;以及结果分析和可视化。 此外,描述中提到的其他领域如智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划和无人机,都是MATLAB在工程和科研中广泛应用的领域。这些技术虽然没有直接关联于微电网优化,但都体现了MATLAB作为一种强大的多学科工具箱,可以支持各种复杂的建模和仿真任务。 这个压缩包提供了一个使用遗传算法解决孤岛型微电网调度优化问题的实例,对于学习微电网优化和遗传算法的实践者来说是宝贵的资源。通过阅读和运行代码,可以深入理解这两种技术的结合及其在实际问题中的应用。同时,这也提醒我们,MATLAB作为一款强大的工具,可以跨越多个工程和科学领域,实现多元化的问题解决。
2024-07-15 20:16:14 233KB matlab
1
为校正Pareto-Beta跳扩散期权定价模型,首先,利用Pareto-Beta跳扩散模型和双指数跳扩散模型之间的联系使模型参数减少,然后,通过使欧式期权价格和相应的市场价格之间的均方误差最小将模型校正问题转化为局部最优化问题,通过在均方误差项增加一个惩罚函数保证了解的存在性和唯一性.为了提高模型校正的效率,利用快速傅立叶变换方法计算欧式期权价格.最后,将模型和校正算法应用于S&P 500指数期权进行实证分析,数值结果显示,所提校正算法具有较好的稳定性.
1
CSDN海神之光上传的代码均可运行,亲测可用,直接替换数据即可,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-07-11 17:36:08 143KB matlab
1
钻井布局的优化模型 钻井布局的优化模型 摘要:本文针对勘探部门在钻井找矿时,如何进行最优钻井布局的问题,进行了深入的分析和讨论,利用一维搜索、二维搜索、三维搜索得到不同条件下最多可利用旧井数的算法。最后结果是: 问题一:利用二维搜索法进行求解,当网络的一个结点在区域 D={(x,y)} 的范围内变化,方向与坐标轴平行时,可以利用的旧井点数最多,分别为2、4、5、10四个井点。 问题二:采用三维搜索法求解,当网格的一个结点在(0.02,0.2)点,横向与x轴成44.64°时,可利用的旧井点数最多,分别为1、6、7、8、9、11六个井点
2024-07-10 15:10:54 63KB 数学建模 全国一等奖
1
《矩形件下料优化排样的遗传算法》 在制造业中,材料的高效利用是降低成本、提高生产效率的关键环节之一。对于矩形零件的切割,如何进行合理的排样设计,以减少材料浪费,是一个重要的技术问题。遗传算法作为一种启发式搜索方法,被广泛应用于解决此类复杂的优化问题,尤其在二维切割排样领域。 排样优化算法的目标是在有限的原材料板上,以最小的浪费量安排尽可能多的矩形零件。传统的手工排样方法难以应对形状复杂、数量众多的零件,因此引入计算机辅助设计(CAD)和计算技术成为必然。遗传算法便是其中一种强大的工具,它模仿生物进化过程中的自然选择、遗传和突变机制,通过迭代搜索来逼近最优解。 遗传算法的基本流程包括初始化种群、适应度评价、选择、交叉和变异等步骤。随机生成一个初始的矩形零件布局种群,每个个体代表一种可能的排样方案。然后,根据一定的评价函数(如剩余材料面积或切割路径长度)计算每个方案的适应度。适应度高的个体有更大的概率被选中参与下一代的生成。接着,通过交叉操作(如部分匹配交叉)使得优秀的基因得以传递,同时,变异操作(如单点变异)保证了种群的多样性,防止早熟收敛。 在矩形件的排样优化中,遗传算法的具体实现可能包括以下几个关键步骤: 1. 初始化:创建包含多个矩形布局的初始种群,每个布局表示一种可能的排样方案。 2. 适应度函数:定义合适的评价标准,如剩余材料面积、零件间的间隙和切割路径长度等。 3. 选择策略:采用轮盘赌选择法或者锦标赛选择法等,以适应度为依据挑选个体。 4. 交叉操作:对选出的两个个体进行部分匹配交叉,生成新的排样方案。 5. 变异操作:在新个体中随机选取一部分矩形进行位置或方向的微调。 6. 迭代优化:重复选择、交叉和变异步骤,直到满足停止条件(如达到预设的迭代次数或适应度阈值)。 遗传算法的优势在于其全局搜索能力和并行处理特性,能有效探索庞大的解空间,找到接近最优的排样方案。但需要注意的是,遗传算法的性能依赖于参数设置,如种群大小、交叉概率、变异概率等,这些参数需根据具体问题进行调整。 在《矩形件下料优化排样的遗传算法》中,提供的源码可能包含了遗传算法的具体实现,以及用于演示和测试的实例数据。通过理解和应用这些源码,工程师可以针对实际生产环境调整算法,实现定制化的排样优化,进一步提升生产效率和材料利用率。
2024-07-10 15:09:07 1.95MB
最好用的机密狗解密器 本作品只提供研究之用 切勿非法用途 否则后果自负 支持WIN10 WIN7 WIN8 XP 百分百绿色 无后门 下载收藏 以防备用 感谢论坛提供这么好的平台给我们在此相聚 认识并结交 】谢谢大家支持 以后还有更好的作品 纯属一小菜鸟技术员 SVO77
2024-07-09 13:39:26 3.27MB win10 win7优化
1
随着移动机器人应用领域的扩大和工作环境的复杂化,传统路径规划算法因其自身局限性变得难以满足人们的要求。近年来,智能仿生算法因其群集智慧和生物择优特性而被广泛应用于移动机器人路径规划优化中。首先,按照智能仿生算法仿生机制的来源,对应用于路径规划优化中的智能仿生算法进行了分类。然后,按照不同的类别,系统的叙述了各种新型智能仿生算法在路径规划优化中取得的最新研究成果,总结了路径规划优化过程中存在的问题以及解决方案,并对算法在路径规划优化中的性能进行了比较分析。最后对智能仿生算法在路径规划优化中的研究方向进行了探讨。
2024-07-08 11:44:29 1.51MB 移动机器人
1
混合NSGAII-多目标粒子群优化算法是一种用于解决多目标优化问题的高效算法,它结合了非支配排序遗传算法(NSGA-II)和粒子群优化(PSO)的优势。NSGA-II是一种基于种群的演化算法,适用于处理多个目标函数的优化问题,而PSO则是一种基于群体智能的全局搜索方法,能够快速探索解决方案空间。 在MATLAB环境下,这个压缩包包含了一系列用于实现这一算法的脚本和函数: 1. `trygatf1.m`, `trygatf3.m`, `trygatf2.m`:这些可能是测试函数,用于检验算法性能。它们可能代表了不同的多目标优化问题,比如测试函数通常模拟现实世界中的复杂优化场景。 2. `NonDominatedSorting.m`:这是非支配排序的实现。在多目标优化中,非支配解是那些没有被其他解在所有目标函数上同时优于或等于的解。这个函数将种群中的个体按照非支配关系进行排序,是NSGA-II的核心部分。 3. `CalcCrowdingDistance.m`:计算拥挤距离,这是NSGA-II中用于保持种群多样性的一个策略。当两个个体在同一非支配层时,根据它们在目标空间中的相对位置计算拥挤距离,以决定在选择过程中谁应该被保留下来。 4. `SelectLeader.m`:选择领袖函数。在混合算法中,可能会有多种策略来选择精英个体,如保留上一代的最佳解或者根据某种规则选择部分解作为领袖。 5. `FindGridIndex.m`:这可能是网格索引查找函数,用于在特定维度或目标空间中分配个体到网格,以辅助解的分类和比较。 6. `DetermineDomination.m`:确定支配关系的函数。每个个体需要与其他个体比较,以确定其在目标函数空间中的支配状态。 7. `SortPopulation.m`:对种群进行排序的函数,可能包括非支配排序和拥挤距离排序等步骤。 8. `DeleteOneRepMemebr.m`:删除重复或冗余个体的函数,确保种群中的每个个体都是唯一的,以保持种群的多样性。 通过这些脚本和函数的组合,用户可以实现一个完整的混合NSGAII-PSO算法,解决多目标优化问题。在实际应用中,用户可能需要调整参数,如种群大小、迭代次数、学习因子等,以适应具体问题的需求,并通过测试函数验证算法的性能和收敛性。这种混合算法的优势在于结合了两种优化方法的特性,既能利用PSO的全局搜索能力,又能利用NSGA-II的非支配排序和拥挤距离策略来保持种群的多样性和进化方向。
2024-07-06 21:22:19 17KB matlab
1
利用ANSYS软件对压阻式微加速度计进行结构优化的设计、电子技术,开发板制作交流
2024-07-04 21:52:39 289KB
1