为了实现对微弱低信噪比的心电信号的有效提取,采用了Mallat算法的小波分解重构法去除心电信号的噪声。首先确定小波分解重构的小波基;其次确定分解的层数;然后直接提取有用信号所在的频带(有用信号占优的频带)进行重构;最后,Matlab仿真MIT-BIT标准数据 库中的心电信号表明小波分解重构法可以有效的去除心电信号中的多种干扰;同时比起传统滤波器法来说,小波分解与重构去噪法应用起来更方便。
1
2013年暑期初中教学设计课例分解表及范例.ppt
2021-12-14 12:04:41 874KB
提出了一种有效的盲检测算法来识别图像复制区域伪造。该算法采用截尾奇异值分解(truncatedsingular value decomposition,TSVD)变换来处理图像块数据,并对图像块进行相似性匹配检测。实验结果表明,本算法具有较强的检测能力,能够有效抵抗多种修饰操作,如JPEG有损压缩、高斯模糊、高斯白噪声污染等。
1
Matlab非负矩阵分解NMF-NMF.ppt 非负矩阵分解讲义与程序 QQ截图未命名1.jpg QQ截图未命名2.jpg
2021-12-13 10:45:12 67KB matlab
1
需要下载pywt库,利用python计算小波包的分解、重构及计算小波能量,代码简单易懂,依次类推可以及算小波熵。
1
matlab自相关代码“基于变分模式分解和长短期记忆的流量预测的分解集成模型”的代码存储库 左建义 电子邮件:Github: 这项研究在很大程度上依赖于开源软件。 Pandas(McKinney,2010)和numpy(Stéfanet al。,2011)用于管理和处理流数据。 Matlab用于执行流分解任务并计算子信号的PACF。 Matlab的实现分别来自Dragomiretskiy和Zosso(2014)以及Wu和Huang(2009)。 这是基于Matlab内置工具箱(“ Wavelet Analyzer”中的“ Wavelet 1-D”)执行的。 (Pedregosa et al。,2011)中的GBRT模型用于衡量分解后的子信号的重要性。 使用Matplotlib(Hunter,2007)绘制数字,并使用(Abadi等人,2016)训练LSTM模型。 这些开源软件也被先前的研究人员(例如Kratzert等人)部分使用。 (2018)。 如何验证研究结果 克隆此存储库表单。 git clone https://github.com/zjy8006/DailyStreamflo
2021-12-12 20:26:23 1.2MB 系统开源
1
为了提高多目标优化算法解集的分布性和收敛性,提出一种基于分解和差分进化的多目标粒子群优化算法(dMOPSO-DE).该算法通过提出方向角产生一组均匀的方向向量,确保粒子分布的均匀性;引入隐式精英保持策略和差分进化修正机制选择全局最优粒子,避免种群陷入局部最优Pareto前沿;采用粒子重置策略保证群体的多样性.与非支配排序(NSGA-II)算法、多目标粒子群优化(MOPSO)算法、分解多目标粒子群优化(dMOPSO)算法和分解多目标进化-差分进化(MOEA/D-DE)算法进行比较,实验结果表明,所提出算法在求解多目标优化问题时具有良好的收敛性和多样性.
1
提出一种新的通过加入引导信号构造Hankel矩阵经奇异值分解(SVD)滤除相应频率成分的陷波方法。根据待处理信号构造的Hankel矩阵,经SVD后其奇异值对应信号中不同频谱幅值的频率成分,提出加入某特定频率信号作为引导信号使得该频率成分成为信号中的主成分,形成易区分的奇异值对,在信号重构时除掉该奇异值对便可滤除相应频率成分。用本方法对脑磁信号进行50 Hz工频陷波处理,达到了很好的陷波效果,且该方法不受传统滤波器陷波越深受影响带宽越宽的限制。
2021-12-11 17:54:24 496KB 奇异值分解 陷波 Hankel矩阵 脑磁信号
1
WBS CHART PRO是专业绘制WBS图的软件,可以自由导入到PROJECT和P3里,可以很大程度的简化WBS的绘制。 在项目管理中,我们通常需要编制工作分解结构(WBS)图。附带中文的使用教程和注册码。
2021-12-10 23:34:00 4.42MB WBS 工作分解结构 WBSChartPro 注册码
1
为了提高掘进机振动信号小波包去噪的效果,最大限度避免噪声对信号特征提取的影响,提出了基于最优小波基选取的掘进机振动信号去噪方法。该方法以信号频谱为分析依据,首先确定了小波包分解的最优分解层数,再选择最优小波基函数,实现了对掘进机振动信号的实时处理,去噪效果达到了最佳。现场试验结果也验证了该方法的有效性。
1